男生坤坤打扑克女生坤坤打扑克,一款汇聚潮流与创新的应用,带你领略科技与生活的完美融合

k1体育麻将胡了

搜索 猫眼影戏 融媒体矩阵
  • 山东手机报

  • 猫眼影戏

  • 公共网官方微信

  • 公共网官方微博

  • 抖音

  • 人民号

  • 天下党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

F1暴涨20分 ,推理速率恒定!新架构VGent:多目的定位又快又准

2026-01-07 00:57:18
泉源:

猫眼影戏

作者:

马克·利伯特

手机审查

  猫眼影戏记者 吴渊杰 报道Q8X2R7L1T4J5M9B6W3

新智元报道

编辑:LRST

【新智元导读】多目的(Multi-target) 以及 视觉参照(Visual Reference) 为视觉定位(Visual Grounding)使命的推理速率和性能同时带来了全新的挑战。 为相识决这一难题 ,来自UIC和Adobe的研究团队提出了VGent模子。这是一种兼顾速率与性能的?榛杓 ,旨在将模子的推理与展望能力解耦 ,并辅以多种?榛銮考苹 。最终 ,VGent依附不到16B的参数目 ,在多目的及带视觉参照的视觉定位基准(Omnimodal Referring Expression Segmentation, ORES)上 ,大幅逾越了Qwen3-VL-30B ,实现了平均+18.24 F1的重大提升!

在多模态大模子(MLLM)时代 ,视觉定位是MLLM细粒度推理能力的主要一环 ,同时也是实现人机交互和具身智能的焦点能力。

现有的解决计划主要分为两类:

原生Token派(Native-token):像 Qwen2.5-VL 或 Ferret-v2 这样的模子 ,通过自回归(auto-regressive)的方法使用原有的词表逐个天生界线框坐标 。这种方法不但速率慢(推理时间随目的数目线性增添) ,并且在多目的场景下容易爆发幻觉(Hallucinations) ,即模子可能会在枚举完所有目的工具之前就过早阻止 ,或者在目的麋集的场景中陷入无限天生的死循环。如图一所示 ,随着目的数目的增添 ,这类要领在多目的场景下的低效和不稳固性变得尤为显着。

新增Token派(New-token):另一类要领实验通过引入特殊的token(如[SEG]或 object token)来指代目的物。他们需要网络大规模的数据集、从LLM起重新构建一个能明确这些新增token的MLLM。因此 ,这种要领不可阻止地会破损LLM在预训练阶段获得的通用推理能力。更严重的是 ,其导致无法直接使用现有的、先进的、举行了更大规模预训练的开源MLLM(如 QwenVL系列)。

来自UIC(伊利诺伊大学芝加哥分校) 和Adobe的研究团队提出一种?榛谋嗦肫-解码器(Encoder-Decoder)架构VGent ,其焦点头脑是:将高层的语义推理交给MLLM ,将底层的像素展望交给目的检测器(detector) ,最终通过hidden state将这种解耦后的关系举行毗连。

论文地点:https://arxiv.org/abs/2512.11099

研究职员以为 ,语义推理和精准定位是两种截然差别的能力 ,强迫训练一个简单的整体模子去同时醒目笼统的语义推理和像素级别的底层展望 ,会导致性能和效率上的权衡。

更切合直觉的方法 ,应该是由差别的组件做各自善于的事。

基于这一洞察 ,VGent提出了一种?榛谋嗦肫-解码器设计 ,使用现成的MLLM和detector将高层多模态推理与底层展望解耦。

其焦点理念在于MLLM和detector的优势是互补的:MLLM善于多模态语义对齐和推理 ,而detector则善于高效地提供精准的多目的检测框。

图一:VGent(蓝色)与现有先进的MLLM(Qwen2.5-VL ,灰色)在多目的视觉定位使命上的比照。左图显示VGent的推理时间恒定且迅速 ,而 MLLM 随目的数目增添呈线性增添;右图显示VGent在F1分数上实现了显著提升 ,特殊是在多目的场景下。

要领

基础架构

VGent主要由图二所示的encoder和decoder两部分组成 ,并引入了三种?榛銮炕疲ㄍ既⑺暮臀澹。

图二:VGent框架概览

如图二所示 ,左侧encoder是一个 MLLM ,使用QuadThinker来提升其多目的推理能力。冻结的encoder输出hidden states并存储下来给到decoder。右侧decoder初始化自encoder的LLM 层 ,其将detector天生的object proposal作为query ,通过cross-attention与encoder的hidden states交互。

研究职员在decoder内部新增了self-attention层(参数初始化自统一层的cross-attention) ,用于增进query之间的信息交流。 最终的输出举行yes / no的二元判断来选择每个proposal是否属于目的。响应的segmentation mask则通过 prompt SAM 获得。

QuadThinker:强化多目的推理能力

针对MLLM在多目的场景下推理能力下降的问题 ,研究职员提出了一种基于 GRPO 的强化学习训练范式QuadThinker ,通过设计特定的prompt和reward functions ,指导模子执行区域到全局、分步推理的历程:先划分统计图像四个象限内的目的数目 ,再汇总总数 ,最后展望详细坐标。

图三:QuadThinker所使用的prompt。

Mask-aware Label:解决检测与支解的歧义

在多目的场景中 ,检测(Box)与支解(Mask)使命的界说保存一定的差别。检测通常优化「一对一」的匹配 ,而支解则旨在召回所有远景像素。

图四:Mask-aware Label示意图;贗oA的标签分派战略能召回被古板IoU忽略的细粒度部件。

这种差别导致了标注歧义:例如图四(左)中 ,检测器可能将「鹿头装饰」与其「挂绳」视为两个自力的框。

在检测使命的 IoU 标准下 ,由于挂绳的框较量小、相关于整体真值框的重叠率过低 ,往往会被看成负样本在标注阶段被过滤掉(被标上负标签)。可是关于支解使命来说 ,这个挂绳属于远景 ,其应该被标上正标签。

为此 ,VGent引入了Mask-aware Label ,使用IoA (Intersection-over-Area) 指标举行特另外标签分派。如图四(右) ,IoA通过盘算候选mask (通过proposal prompt SAM获得)与多目的真值的union mask的交集 ,并除以候选mask自身的面积获得。

由于IoA的分母是候选mask自身面积 ,该机制能精准召回那些虽然只笼罩了部分目的群(如细小的挂绳)但依然有用的 proposal。模子使用另一个自力的MLP head专门展望这种支解导向的标签 ,用于解决视觉定位中支解类型的输出。

Global Target Recognition:增强全局感知

为了提升候选框选择的准确性 ,VGent 引入了Global Target Recognition?。

图五:Global Target Recognition示意图。使用Learnable Queries注入全局目的数目信息 ,并聚合多个detector的效果以提升召回率。

为了提高召回率 ,研究职员聚合了来自多个detector的proposal形成一个统一的query set ,之后引入了特另外 learnable queries与这些proposal queries拼接作为decoder的输入。

这组query被专门训练用于展望目的的总数以及正样本proposal的数目。通过decoder层内的self-attention机制 ,这些包括全局统计信息的learnable query能够与proposal query举行交互 ,将「全局线索」撒播给每一个候选框 ,从而增强其对目的群体的整体明确 ,实现更精准的选择。

实验效果

研究职员在最新的多目的视觉定位基准 ORES (MaskGroups-HQ) 以及古板的单目的数据集上举行了普遍评估。

多目的视觉定位(Multi-target Visual Grounding)

图六:在 Omnimodal Referring Expression Segmentation (ORES) 上的性能比照。ORES是多目的以及保存视觉参照(w/ < mask-ref >)的视觉定位基准。

如图六所示 ,在极具挑战的ORES基准上 ,VGent 取得了全新的SOTA效果。相比之前的最佳要领RAS13B ,VGent在F1分数上实现了+20.58%的重大提升。VGent在gIoU和cIoU上都带来了显着的提升。

值得注重的是 ,纵然比照参数目更大的Qwen3-VL-30B ,VGent 依然坚持显著优势。同时 ,得益于?榛杓 ,VGent 在目的数目增添时坚持恒定且快速的推理速率 ,阻止了自回归模子随目的增添而线性增添的推理延迟(如图一所示)。

单目的视觉定位(Single-target Visual Grounding)

图七:在referring expression comprehension (REC) 上的性能比照。

VGent在古板单目的基准(RefCOCO, RefCOCO+, RefCOCOg)上也体现卓越。

VGent实现了90.1%的平均准确率 ,逾越了InternVL3.5-20B和38B等更大规模的模子 。相比其backbone (Qwen2.5-VL-7B) ,VGent带来了+3.5%的平均性能提升。

可视化

图八:VGent在差别挑战下的展望效果可视化。

VGent在重大场景中展现了极强的鲁棒性。

如图八(上)所示 ,VGent精准定位所有方形钟表 ,纵然保存大宗相似的钟表作为滋扰项 ,展现了VGent在麋集多目的场景下的优越体现。

图八(下)中 ,VGent 乐成定位了视觉参照(蓝色 mask) ,并继续推断出左侧穿裙子的女士 ,扫除了右侧的滋扰项。

参考资料:

https://arxiv.org/abs/2512.11099

秒追ASI

?点赞、转发、在看一键三连?

点亮星标 ,锁定新智元极速推送!

??时势1:欧美激情视频一区二区苍井空

??01月07日,广州千年古村车陂“开油锅”喜迎龙年,

  雷侯的四子是一个二十几岁的青年 ,名为雷云坤 ,雄姿挺秀 ,健硕高伟 ,眸子有玄色闪电浮现 ,想里走去 ,站在几口药鼎前 ,露出受惊的神色。

,国产强奸乱伦视频。

??01月07日,新疆呼图壁:民众畅享“冰雪+”乐趣,

  这一击简直如灭世一样平常 ,这天地都被捅破了!

,欧美婬欲,亚色网妓女网毛片网上射射网,黄色精品。

??时势2:美女AAAA免费操

??01月07日,(乡村行·看振兴)山西临猗:“蟹”逅充足电 助力产业兴,

  加入DVD交互式教学角逐获省一等奖;x先生加入生物实验立异角逐获市一等奖;加入区数学教学角逐获特等奖;加入区中学语文教学角逐获一等奖。说课获市一等奖。整年西席撰写的论文有9篇获省级奖励 ,32篇在市级论文评选中获奖 ,20篇获区级奖励 ,教案5篇区奖。

,91精品www在线,黑人A级免费在线看,欧美∨日韩在线视频。

??01月07日,上合示范区今年已到发中欧班列964列 数量创历史同期新高高质量发展看中国|陕西榆林:精准提高农村公共服务水平,

  8、坚韧不拔抓好档案清静治理事情

,国产成人无套,清清操免费视频,亚洲二区在线。

??时势3:久久综合九色综合97伊人麻豆

??01月07日,神舟十九号发射在即 各系统准备就绪,

  2、 替换教学楼窗户 ,修建停车坪。

,_级黄色视频,宝宝握住它坐下自己动头~,祺鑫全车系。

??01月07日,181套藏品讲述国乒队员容国团为中国夺得首个世界冠军历史,

  三是注重指导 ,确保党委意图和群众的真实意愿相统一。为了包管这次村党组织换届选举顺遂举行 ,镇党委提出了“营生长 ,求稳固;因村制宜 ,各有着重”的支委配备意见。凭证这一总体思绪 ,在换届选举事情向导小组成员的向导下 ,各联村事情指导员在第二轮调研历程中举行指导性座谈 ,消除一些由于事情中相同缺乏引起的误会 ,指导他们从阵势出发 ,从而把党委意图和群众意愿很好地统一起来 ,同时也确保了被撤并小村代表和女性同志在新支委配备中的比例 ,真正做到了统筹兼顾。为了确保选举事情取得乐成 ,我们不但在座谈中举行侧面指导 ,同时在选举历程中 ,镇三套班子成员和农村指导员划分在发动讲话和聚会主持历程中举行适当的正面指导 ,使那些政治强、作风正、劲头足、懂谋划、会治理、年岁轻、愿意为群众办实事的优异 ,顺遂选拔进村党支部向导班子 ,使党委意图和宽大群众的意愿抵达有机连系。

,啊啊啊国产无码在线,亚洲综合一区在线,强奸黑丝美女视频。

??时势4:清纯JK白丝女校花被C

??01月07日,今晚第一场!看王楚钦孙颖莎奥运后混双首秀,

  水下 ,独角兽挣扎 ,它太难受了 ,血液都快阻止流动了 ,幸好它喝下了五色鸟蛋最后的汁液 ,此时化成霞光 ,让它不至于连忙被冻死。

,一级黄色欧美视频a,丸子君素材库2,荫蒂被男人添的还是亲的。

??01月07日,【中国少年说·可爱的中国】00后网球“金花”绽放红土场,薪火相传创造历史,

  小不点苦着一张脸 ,小声问道:“还能改不?”

,国产精品一区二区视频,1024色婬性视频,打臀缝撅高姜塞。

责编:李惠民

审核:赵景芬

责编:余静一

相关推荐 换一换

Copyright (C) 2001-   dzwww.com. All Rights Reserved

新闻信息效劳允许证 - 音像制品出书允许证 - 广播电视节目制作谋划允许证 - 网络视听允许证 - 网络文化谋划允许证

山东省互联网传媒集团主理  联系电话:0531-85193202  违法不良信息举报电话:0531-85196540

鲁ICP备09023866号-1   鲁公网安备 37010202000111号  

Copyright (C) 2001- Dzwww   鲁ICP备09023866号-1

网站地图