亚洲中文字幕精品久久,让你在休闲的每一刻都能享受极致的娱乐体验,开启属于你的快乐时光

k1体育麻将胡了

亚洲中文字幕精品久久 最近更新|更新列表|字母检索|下载排行|苹果专区|分类导航

目今位置:首页电脑软件三千鸦杀 → 亚洲中文字幕精品久久 v2.88.4196.256263 安卓版

亚洲中文字幕精品久久

亚洲中文字幕精品久久

  • 电脑版下载
猜你喜欢
标签: 亚洲中文字幕精品久久 98色色视频
详情
先容
猜你喜欢
相关版本

亚洲中文字幕精品久久截图Q8X2R7L1T4J5M9B6W3

  • 亚洲中文字幕精品久久 v139.0.7258.143 绿色版 0
  • 亚洲中文字幕精品久久 v139.0.7258.143 绿色版 1
  • 亚洲中文字幕精品久久 v139.0.7258.143 绿色版 2
  • 亚洲中文字幕精品久久 v139.0.7258.143 绿色版 3

内容详情

亚洲中文字幕精品久久

新智元报道

编辑:LRST

【新智元导读】多目的(Multi-target) 以及 视觉参照(Visual Reference) 为视觉定位(Visual Grounding)使命的推理速率和性能同时带来了全新的挑战。 为相识决这一难题,来自UIC和Adobe的研究团队提出了VGent模子。这是一种兼顾速率与性能的 ?榛杓,旨在将模子的推理与展望能力解耦,并辅以多种 ?榛銮考苹 。最终,VGent依附不到16B的参数目,在多目的及带视觉参照的视觉定位基准(Omnimodal Referring Expression Segmentation, ORES)上,大幅逾越了Qwen3-VL-30B,实现了平均+18.24 F1的重大提升!

在多模态大模子(MLLM)时代,视觉定位是MLLM细粒度推理能力的主要一环,同时也是实现人机交互和具身智能的焦点能力。

现有的解决计划主要分为两类:

原生Token派(Native-token):像 Qwen2.5-VL 或 Ferret-v2 这样的模子,通过自回归(auto-regressive)的方法使用原有的词表逐个天生界线框坐标 。这种方法不但速率慢(推理时间随目的数目线性增添),并且在多目的场景下容易爆发幻觉(Hallucinations),即模子可能会在枚举完所有目的工具之前就过早阻止,或者在目的麋集的场景中陷入无限天生的死循环。如图一所示,随着目的数目的增添,这类要领在多目的场景下的低效和不稳固性变得尤为显着。

新增Token派(New-token):另一类要领实验通过引入特殊的token(如[SEG]或 object token)来指代目的物。他们需要网络大规模的数据集、从LLM起重新构建一个能明确这些新增token的MLLM。因此,这种要领不可阻止地会破损LLM在预训练阶段获得的通用推理能力。更严重的是,其导致无法直接使用现有的、先进的、举行了更大规模预训练的开源MLLM(如 QwenVL系列)。

来自UIC(伊利诺伊大学芝加哥分校) 和Adobe的研究团队提出一种 ?榛谋嗦肫-解码器(Encoder-Decoder)架构VGent,其焦点头脑是:将高层的语义推理交给MLLM,将底层的像素展望交给目的检测器(detector),最终通过hidden state将这种解耦后的关系举行毗连。

论文地点:https://arxiv.org/abs/2512.11099

研究职员以为,语义推理和精准定位是两种截然差别的能力,强迫训练一个简单的整体模子去同时醒目笼统的语义推理和像素级别的底层展望,会导致性能和效率上的权衡。

更切合直觉的方法,应该是由差别的组件做各自善于的事。

基于这一洞察,VGent提出了一种 ?榛谋嗦肫-解码器设计,使用现成的MLLM和detector将高层多模态推理与底层展望解耦。

其焦点理念在于MLLM和detector的优势是互补的:MLLM善于多模态语义对齐和推理,而detector则善于高效地提供精准的多目的检测框。

图一:VGent(蓝色)与现有先进的MLLM(Qwen2.5-VL,灰色)在多目的视觉定位使命上的比照。左图显示VGent的推理时间恒定且迅速,而 MLLM 随目的数目增添呈线性增添 ;右图显示VGent在F1分数上实现了显著提升,特殊是在多目的场景下。

要领

基础架构

VGent主要由图二所示的encoder和decoder两部分组成,并引入了三种 ?榛銮炕疲ㄍ既⑺暮臀澹。

图二:VGent框架概览

如图二所示,左侧encoder是一个 MLLM,使用QuadThinker来提升其多目的推理能力。冻结的encoder输出hidden states并存储下来给到decoder。右侧decoder初始化自encoder的LLM 层,其将detector天生的object proposal作为query,通过cross-attention与encoder的hidden states交互。

研究职员在decoder内部新增了self-attention层(参数初始化自统一层的cross-attention),用于增进query之间的信息交流。 最终的输出举行yes / no的二元判断来选择每个proposal是否属于目的。响应的segmentation mask则通过 prompt SAM 获得。

QuadThinker:强化多目的推理能力

针对MLLM在多目的场景下推理能力下降的问题,研究职员提出了一种基于 GRPO 的强化学习训练范式QuadThinker,通过设计特定的prompt和reward functions,指导模子执行区域到全局、分步推理的历程:先划分统计图像四个象限内的目的数目,再汇总总数,最后展望详细坐标。

图三:QuadThinker所使用的prompt。

Mask-aware Label:解决检测与支解的歧义

在多目的场景中,检测(Box)与支解(Mask)使命的界说保存一定的差别。检测通常优化「一对一」的匹配,而支解则旨在召回所有远景像素。

图四:Mask-aware Label示意图 ;贗oA的标签分派战略能召回被古板IoU忽略的细粒度部件。

这种差别导致了标注歧义:例如图四(左)中,检测器可能将「鹿头装饰」与其「挂绳」视为两个自力的框。

在检测使命的 IoU 标准下,由于挂绳的框较量小、相关于整体真值框的重叠率过低,往往会被看成负样本在标注阶段被过滤掉(被标上负标签)。可是关于支解使命来说,这个挂绳属于远景,其应该被标上正标签。

为此,VGent引入了Mask-aware Label,使用IoA (Intersection-over-Area) 指标举行特另外标签分派。如图四(右),IoA通过盘算候选mask (通过proposal prompt SAM获得)与多目的真值的union mask的交集,并除以候选mask自身的面积获得。

由于IoA的分母是候选mask自身面积,该机制能精准召回那些虽然只笼罩了部分目的群(如细小的挂绳)但依然有用的 proposal。模子使用另一个自力的MLP head专门展望这种支解导向的标签,用于解决视觉定位中支解类型的输出。

Global Target Recognition:增强全局感知

为了提升候选框选择的准确性,VGent 引入了Global Target Recognition ?。

图五:Global Target Recognition示意图。使用Learnable Queries注入全局目的数目信息,并聚合多个detector的效果以提升召回率。

为了提高召回率,研究职员聚合了来自多个detector的proposal形成一个统一的query set,之后引入了特另外 learnable queries与这些proposal queries拼接作为decoder的输入。

这组query被专门训练用于展望目的的总数以及正样本proposal的数目。通过decoder层内的self-attention机制,这些包括全局统计信息的learnable query能够与proposal query举行交互,将「全局线索」撒播给每一个候选框,从而增强其对目的群体的整体明确,实现更精准的选择。

实验效果

研究职员在最新的多目的视觉定位基准 ORES (MaskGroups-HQ) 以及古板的单目的数据集上举行了普遍评估。

多目的视觉定位(Multi-target Visual Grounding)

图六:在 Omnimodal Referring Expression Segmentation (ORES) 上的性能比照。ORES是多目的以及保存视觉参照(w/ < mask-ref >)的视觉定位基准。

如图六所示,在极具挑战的ORES基准上,VGent 取得了全新的SOTA效果。相比之前的最佳要领RAS13B,VGent在F1分数上实现了+20.58%的重大提升。VGent在gIoU和cIoU上都带来了显着的提升。

值得注重的是,纵然比照参数目更大的Qwen3-VL-30B,VGent 依然坚持显著优势。同时,得益于 ?榛杓,VGent 在目的数目增添时坚持恒定且快速的推理速率,阻止了自回归模子随目的增添而线性增添的推理延迟(如图一所示)。

单目的视觉定位(Single-target Visual Grounding)

图七:在referring expression comprehension (REC) 上的性能比照。

VGent在古板单目的基准(RefCOCO, RefCOCO+, RefCOCOg)上也体现卓越。

VGent实现了90.1%的平均准确率,逾越了InternVL3.5-20B和38B等更大规模的模子 。相比其backbone (Qwen2.5-VL-7B),VGent带来了+3.5%的平均性能提升。

可视化

图八:VGent在差别挑战下的展望效果可视化。

VGent在重大场景中展现了极强的鲁棒性。

如图八(上)所示,VGent精准定位所有方形钟表,纵然保存大宗相似的钟表作为滋扰项,展现了VGent在麋集多目的场景下的优越体现。

图八(下)中,VGent 乐成定位了视觉参照(蓝色 mask),并继续推断出左侧穿裙子的女士,扫除了右侧的滋扰项。

参考资料:

https://arxiv.org/abs/2512.11099

秒追ASI

?点赞、转发、在看一键三连?

点亮星标,锁定新智元极速推送!

相关版本

    多平台下载

    • PC版

      亚洲中文字幕精品久久 v6.324.8604.873232 PC版

    • Android版

      亚洲中文字幕精品久久 v8.575 安卓漢化版

    审查所有0条谈论>网友谈论

    揭晓谈论

    (您的谈论需要经由审核才华显示) 网友粉丝QQ群号:766969941

    审查所有0条谈论>>

    相关软件
    意大利disco女王 妓女性爱色视频 男男佐鸣18 AV黄漫 色94色欧美一区 日本黄大片BBBBB A级毛片网站在线观看 农村一级aa 91在线视频网站观看 自拍理伦三级视频 超碰人人干人人草 日日夜夜黄色网站 欧美永久黄色网站 白丝美女啪啪啪 欧美性爱网站观看 最广黄色网站免费进入 符玄被 到爽流白浆-百度 雏田爆乳被 动漫美女喝豆浆 骇爪同人 精品一区二区三区欧美人妖 欧美乱色伦图片区小说 一级国产黄色视频免费观看 美女汚汚无遮挡免费视频 欧洲熟妇色XXXX欧美老妇极端 91少萝自慰裸体  91 com色黄 黄色性爱视频网 免费无码视频一区 伊人超碰 偷窥妓女卖淫 亚洲操在线观看 香港A毛片一二三区中文字幕 国产资源不卡在线91 丝袜美女被操哭 欧美人淫荡片 影音先锋每日全部新资源 18一级大黄毛片 你懂的 在线播放 扣扣传媒有限公司官网 久久激情小视频 99视频免费网站入口 国产一级媱片A片免费 a片免观看 搞黄刺激无遮挡网站 黄黄黄视频网站 色男人天堂无码 欧美日韩国产综合一区WWV 国产精品无码久久AV 女性脱 给我揉 葡萄网 麻麻的婬肉泬白浆 黄色片国产女孩日逼视频成年白看 亚洲美女在线被操 久久精品国产精品久久人 日香蕉色色 亚洲69 女美裸 日韩免费无码视频一区二区三区 99re这里只有精品视频一区二区 三上退役免费高清播放 性爱无码一区 XNXX19日本老师 妹妹鼓蓬蓬的牦户读qi还是yi 熟女偷拍 黄色视频网页免费观看 人人操人人摞 69人妻精品久久无码专区 亚洲日韩性生活黄色片 亚洲精品 在线 视频下载黄国产一本 能看的网站毛片 538无码精品一区二区 91欧美精品一区二区三区网站 欧美性爱野战自拍 欧美性爱网网址 av资源播放 国产特黄乱婬视频 欧美疯狂婬乱A片 淫荡少妇求操视频 又爽又粗又硬又硬又骚 性爱日韩一区 黄站在线 欧美一区 国产一区 动漫裸体被 羞羞动漫 精品国产熟女白浆一区二区 欧美视频天堂在线观看 家庭成员之间性乱伦视频 原神裸体涩涩 网站 超碰在线公开中文 78map打扑克 日本激情视频图片小说在线 天天一级片 国产内急免费视频 你懂的视频在线播放 美女骚逼暴操 色五月开心五月激情五月深爱五月 精品视频无挡 航三级黄日本打色毛 欧美一区二区激情在线视频 xxxx免费网站 特黄A片一级J8区 激情自拍网站 性生活免费看老外 伊人久久精品无码二区69蜜 一级做a爰片久久毛片A片浪潮 李小冉三级露全乳 欧美一区爽爽午夜福利视频 嫩草国产精品 日本三级电影免费在线播放 把女人弄爽特黄a大片吹潮 999久久久999精品视频 zujiao.com 一级黄片三级黄片 一本大道香蕉久97在线 老妓女综合网精品 2色色 成长在线视频免费观看_国产综合色产在线视频_成长在线视频免费观看_ 国产精品你懂的在线播放 91乱论在线播放 国产原创中文字幕 正在播放农村嫖妓女在线播放
    热门网络工具
    网站地图