(2分钟一步到位)亚洲图片激情鸿蒙版v261.33.24.66.60.7.1-2265安卓网

k1体育麻将胡了

搜索 猫眼影戏 融媒体矩阵
  • 山东手机报

  • 猫眼影戏

  • 公共网官方微信

  • 公共网官方微博

  • 抖音

  • 人民号

  • 天下党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

F1暴涨20分  ,推理速率恒定!新架构VGent:多目的定位又快又准

2026-01-08 13:57:39
泉源:

猫眼影戏

作者:

欧吉桑

手机审查

  猫眼影戏记者 李向明 报道Q8X2R7L1T4J5M9B6W3

新智元报道

编辑:LRST

【新智元导读】多目的(Multi-target) 以及 视觉参照(Visual Reference) 为视觉定位(Visual Grounding)使命的推理速率和性能同时带来了全新的挑战 。 为相识决这一难题  ,来自UIC和Adobe的研究团队提出了VGent模子 。这是一种兼顾速率与性能的 ?榛杓  ,旨在将模子的推理与展望能力解耦  ,并辅以多种 ?榛銮考苹  。最终  ,VGent依附不到16B的参数目  ,在多目的及带视觉参照的视觉定位基准(Omnimodal Referring Expression Segmentation, ORES)上  ,大幅逾越了Qwen3-VL-30B  ,实现了平均+18.24 F1的重大提升!

在多模态大模子(MLLM)时代  ,视觉定位是MLLM细粒度推理能力的主要一环  ,同时也是实现人机交互和具身智能的焦点能力 。

现有的解决计划主要分为两类:

原生Token派(Native-token):像 Qwen2.5-VL 或 Ferret-v2 这样的模子  ,通过自回归(auto-regressive)的方法使用原有的词表逐个天生界线框坐标  。这种方法不但速率慢(推理时间随目的数目线性增添)  ,并且在多目的场景下容易爆发幻觉(Hallucinations)  ,即模子可能会在枚举完所有目的工具之前就过早阻止  ,或者在目的麋集的场景中陷入无限天生的死循环 。如图一所示  ,随着目的数目的增添  ,这类要领在多目的场景下的低效和不稳固性变得尤为显着 。

新增Token派(New-token):另一类要领实验通过引入特殊的token(如[SEG]或 object token)来指代目的物 。他们需要网络大规模的数据集、从LLM起重新构建一个能明确这些新增token的MLLM 。因此  ,这种要领不可阻止地会破损LLM在预训练阶段获得的通用推理能力 。更严重的是  ,其导致无法直接使用现有的、先进的、举行了更大规模预训练的开源MLLM(如 QwenVL系列) 。

来自UIC(伊利诺伊大学芝加哥分校) 和Adobe的研究团队提出一种 ?榛谋嗦肫-解码器(Encoder-Decoder)架构VGent  ,其焦点头脑是:将高层的语义推理交给MLLM  ,将底层的像素展望交给目的检测器(detector)  ,最终通过hidden state将这种解耦后的关系举行毗连 。

论文地点:https://arxiv.org/abs/2512.11099

研究职员以为  ,语义推理和精准定位是两种截然差别的能力  ,强迫训练一个简单的整体模子去同时醒目笼统的语义推理和像素级别的底层展望  ,会导致性能和效率上的权衡 。

更切合直觉的方法  ,应该是由差别的组件做各自善于的事 。

基于这一洞察  ,VGent提出了一种 ?榛谋嗦肫-解码器设计  ,使用现成的MLLM和detector将高层多模态推理与底层展望解耦 。

其焦点理念在于MLLM和detector的优势是互补的:MLLM善于多模态语义对齐和推理  ,而detector则善于高效地提供精准的多目的检测框 。

图一:VGent(蓝色)与现有先进的MLLM(Qwen2.5-VL  ,灰色)在多目的视觉定位使命上的比照 。左图显示VGent的推理时间恒定且迅速  ,而 MLLM 随目的数目增添呈线性增添;右图显示VGent在F1分数上实现了显著提升  ,特殊是在多目的场景下 。

要领

基础架构

VGent主要由图二所示的encoder和decoder两部分组成  ,并引入了三种 ?榛銮炕疲ㄍ既⑺暮臀澹 。

图二:VGent框架概览

如图二所示  ,左侧encoder是一个 MLLM  ,使用QuadThinker来提升其多目的推理能力 。冻结的encoder输出hidden states并存储下来给到decoder 。右侧decoder初始化自encoder的LLM 层  ,其将detector天生的object proposal作为query  ,通过cross-attention与encoder的hidden states交互 。

研究职员在decoder内部新增了self-attention层(参数初始化自统一层的cross-attention)  ,用于增进query之间的信息交流 。 最终的输出举行yes / no的二元判断来选择每个proposal是否属于目的 。响应的segmentation mask则通过 prompt SAM 获得 。

QuadThinker:强化多目的推理能力

针对MLLM在多目的场景下推理能力下降的问题  ,研究职员提出了一种基于 GRPO 的强化学习训练范式QuadThinker  ,通过设计特定的prompt和reward functions  ,指导模子执行区域到全局、分步推理的历程:先划分统计图像四个象限内的目的数目  ,再汇总总数  ,最后展望详细坐标 。

图三:QuadThinker所使用的prompt 。

Mask-aware Label:解决检测与支解的歧义

在多目的场景中  ,检测(Box)与支解(Mask)使命的界说保存一定的差别 。检测通常优化「一对一」的匹配  ,而支解则旨在召回所有远景像素 。

图四:Mask-aware Label示意图 ;贗oA的标签分派战略能召回被古板IoU忽略的细粒度部件 。

这种差别导致了标注歧义:例如图四(左)中  ,检测器可能将「鹿头装饰」与其「挂绳」视为两个自力的框 。

在检测使命的 IoU 标准下  ,由于挂绳的框较量小、相关于整体真值框的重叠率过低  ,往往会被看成负样本在标注阶段被过滤掉(被标上负标签) 。可是关于支解使命来说  ,这个挂绳属于远景  ,其应该被标上正标签 。

为此  ,VGent引入了Mask-aware Label  ,使用IoA (Intersection-over-Area) 指标举行特另外标签分派 。如图四(右)  ,IoA通过盘算候选mask (通过proposal prompt SAM获得)与多目的真值的union mask的交集  ,并除以候选mask自身的面积获得 。

由于IoA的分母是候选mask自身面积  ,该机制能精准召回那些虽然只笼罩了部分目的群(如细小的挂绳)但依然有用的 proposal 。模子使用另一个自力的MLP head专门展望这种支解导向的标签  ,用于解决视觉定位中支解类型的输出 。

Global Target Recognition:增强全局感知

为了提升候选框选择的准确性  ,VGent 引入了Global Target Recognition ? 。

图五:Global Target Recognition示意图 。使用Learnable Queries注入全局目的数目信息  ,并聚合多个detector的效果以提升召回率 。

为了提高召回率  ,研究职员聚合了来自多个detector的proposal形成一个统一的query set  ,之后引入了特另外 learnable queries与这些proposal queries拼接作为decoder的输入 。

这组query被专门训练用于展望目的的总数以及正样本proposal的数目 。通过decoder层内的self-attention机制  ,这些包括全局统计信息的learnable query能够与proposal query举行交互  ,将「全局线索」撒播给每一个候选框  ,从而增强其对目的群体的整体明确  ,实现更精准的选择 。

实验效果

研究职员在最新的多目的视觉定位基准 ORES (MaskGroups-HQ) 以及古板的单目的数据集上举行了普遍评估 。

多目的视觉定位(Multi-target Visual Grounding)

图六:在 Omnimodal Referring Expression Segmentation (ORES) 上的性能比照 。ORES是多目的以及保存视觉参照(w/ < mask-ref >)的视觉定位基准 。

如图六所示  ,在极具挑战的ORES基准上  ,VGent 取得了全新的SOTA效果 。相比之前的最佳要领RAS13B  ,VGent在F1分数上实现了+20.58%的重大提升 。VGent在gIoU和cIoU上都带来了显着的提升 。

值得注重的是  ,纵然比照参数目更大的Qwen3-VL-30B  ,VGent 依然坚持显著优势 。同时  ,得益于 ?榛杓  ,VGent 在目的数目增添时坚持恒定且快速的推理速率  ,阻止了自回归模子随目的增添而线性增添的推理延迟(如图一所示) 。

单目的视觉定位(Single-target Visual Grounding)

图七:在referring expression comprehension (REC) 上的性能比照 。

VGent在古板单目的基准(RefCOCO, RefCOCO+, RefCOCOg)上也体现卓越 。

VGent实现了90.1%的平均准确率  ,逾越了InternVL3.5-20B和38B等更大规模的模子  。相比其backbone (Qwen2.5-VL-7B)  ,VGent带来了+3.5%的平均性能提升 。

可视化

图八:VGent在差别挑战下的展望效果可视化 。

VGent在重大场景中展现了极强的鲁棒性 。

如图八(上)所示  ,VGent精准定位所有方形钟表  ,纵然保存大宗相似的钟表作为滋扰项  ,展现了VGent在麋集多目的场景下的优越体现 。

图八(下)中  ,VGent 乐成定位了视觉参照(蓝色 mask)  ,并继续推断出左侧穿裙子的女士  ,扫除了右侧的滋扰项 。

参考资料:

https://arxiv.org/abs/2512.11099

秒追ASI

?点赞、转发、在看一键三连?

点亮星标  ,锁定新智元极速推送!

??时势1:精品视频日本黃色

??01月08日,决胜局完成大逆转 “凡尘组合”用泪水迎接胜利,

  同砚们  ,火给我们带来温暖、灼烁、文明、但火也给我们带来危险和危害  ,在清静平和的情形中  ,我们也要时刻坚持强烈的清静意识  ,做到“不玩火”  ,注重用火用电清静  ,明确消防知识  ,掌握逃生自救本事 。那么  ,小朋侪们  ,一旦火灾来临  ,你知道该怎么做吗 ?首先不可忙乱  ,应冷静冷静  ,若是在学校里  ,应该在先生的向导下按要求有序撤离  ,若是在其他公共场合  ,也应该接纳科学的自救步伐逃生  ,如当你在走进公共场合时  ,要留心清静出口、灭火器的位置  ,以便在爆发意外时实时疏散和灭火  ,还要弄清晰楼层通道  ,不要盲目乱跑或开门  ,更不要朝着特殊灼烁的地方、烟雾大的地方跑 。更主要的是要;ず梦颐堑暮粑低  ,用毛巾或是衣服捂住口鼻  ,不要高声喊叫  ,以防吸入烟雾窒息  ,冲出楼房时  ,要弯腰跑行等 。

,国产按摩女毛片视频 。

??01月08日,国际货币基金组织批准再向阿根廷提供47亿美元贷款,

  下面请念到名字的同砚到台前由张副校长揭晓奖状 。 九年级二模前十名:宋长平 黄嘉庆 刘旭晗 张宇轩 郭俊达 胡红宇 王帆 王倩楠 张鑫 孙浩 六年级前十名:路茗渝 、吴;浴⒏咴葡琛⒄ 睿、唐 浩、 贾玉欣、刘梦佳、周宇彤、王璐璐、马彦龙 七年级前十名:杨崇林 周洵 郝炎煜 叮嘱 李雪竹

,一级片免费视频网站,美女网色,女人被爽到高潮视频国产免费观看 。

??时势2:红太狼被 18禁漫画

??01月08日,透过多维度数据看活力 中国经济“争春夺秒”向“新”奋进,

  这个讲座  ,让我对交通规则有了更进一步的相识:我知道了交警各个手势的意思  ,什么意思要打什么样的手势……我还学会了一首有关于交通规则的童谣  ,但没有拿日志本以是遗忘了词……可是你们知道再没有红绿灯亮的时间怎样过十字交通路口吗?只需记着7个字就行了——一慢二看三通过 。

,免费18,一级毛片全黄无码免费看,www.欧洲黄色 。

??01月08日,粤港澳大湾区“世界级机场群”呼之欲出,

  一、要树立远大理想  ,确立准确的人生观、天下观、价值观 。 你们正处在人生观、天下观、价值观形成的要害时期  ,要逐步提高自己的头脑品德品质  ,完善、增补、构建自我生长的精神支柱 F鹁⒓尤胫种职饕濉⒄逯饕搴蜕缁嶂饕褰逃,坚定准确的理想信心 。

,欧美巨大黑吊操老逼视频,A片免费看视频,美女脱 露出 让男生吃 。

??时势3:触手监狱下载1.2G下载

??01月08日,“五一”假期 西藏拉萨迎客流高峰,

企业开张仪式向导讲话 篇18

,色. com,芋芋cc.,fulao线路检测轻量版 。

??01月08日,青海:鼠疫防控技术体系创新与应急能力提升研究获突破性进展,

  为什么远古凶兽强盛 ?还在幼崽时期就那么逆天  ,远超凡俗  ,有如神话般  ,跟这些也分不开!

,BBIXX国产在线视频,真人版黄色视频,欧美老妇性交高清视频 。

??时势4:娇喘呻吟网站

??01月08日,特朗普面临哪些官司?,

  “相见不如纪念 。”

,美女黄色视频免费,女权调教网站,92国产精品久久久久首页 。

??01月08日,美方就黎以局势表态:停火协议没有破裂,

  “那好  ,我们去寓目  ,期待事业!”有人起哄 。

,久操视频精品,欧美黄色666,娇喘 蘑菇视频 。

责编:李柑利

审核:凯特-布兰切特

责编:欧阳自远

相关推荐 换一换

Copyright (C) 2001-   dzwww.com. All Rights Reserved

新闻信息效劳允许证 - 音像制品出书允许证 - 广播电视节目制作谋划允许证 - 网络视听允许证 - 网络文化谋划允许证

山东省互联网传媒集团主理  联系电话:0531-85193202  违法不良信息举报电话:0531-85196540

鲁ICP备09023866号-1   鲁公网安备 37010202000111号  

Copyright (C) 2001- Dzwww   鲁ICP备09023866号-1

网站地图