猫眼影戏
猫眼影戏
李剑阁
手机审查
猫眼影戏记者 刘延锡 报道Q8X2R7L1T4J5M9B6W3
新智元报道
编辑:LRST
【新智元导读】多目的(Multi-target) 以及 视觉参照(Visual Reference) 为视觉定位(Visual Grounding)使命的推理速率和性能同时带来了全新的挑战。 为相识决这一难题,来自UIC和Adobe的研究团队提出了VGent模子。这是一种兼顾速率与性能的?榛杓,旨在将模子的推理与展望能力解耦,并辅以多种?榛銮考苹 。最终,VGent依附不到16B的参数目,在多目的及带视觉参照的视觉定位基准(Omnimodal Referring Expression Segmentation, ORES)上,大幅逾越了Qwen3-VL-30B,实现了平均+18.24 F1的重大提升!
在多模态大模子(MLLM)时代,视觉定位是MLLM细粒度推理能力的主要一环,同时也是实现人机交互和具身智能的焦点能力。
现有的解决计划主要分为两类:
原生Token派(Native-token):像 Qwen2.5-VL 或 Ferret-v2 这样的模子,通过自回归(auto-regressive)的方法使用原有的词表逐个天生界线框坐标 。这种方法不但速率慢(推理时间随目的数目线性增添),并且在多目的场景下容易爆发幻觉(Hallucinations),即模子可能会在枚举完所有目的工具之前就过早阻止,或者在目的麋集的场景中陷入无限天生的死循环。如图一所示,随着目的数目的增添,这类要领在多目的场景下的低效和不稳固性变得尤为显着。
新增Token派(New-token):另一类要领实验通过引入特殊的token(如[SEG]或 object token)来指代目的物。他们需要网络大规模的数据集、从LLM起重新构建一个能明确这些新增token的MLLM。因此,这种要领不可阻止地会破损LLM在预训练阶段获得的通用推理能力。更严重的是,其导致无法直接使用现有的、先进的、举行了更大规模预训练的开源MLLM(如 QwenVL系列)。
来自UIC(伊利诺伊大学芝加哥分校) 和Adobe的研究团队提出一种?榛谋嗦肫-解码器(Encoder-Decoder)架构VGent,其焦点头脑是:将高层的语义推理交给MLLM,将底层的像素展望交给目的检测器(detector),最终通过hidden state将这种解耦后的关系举行毗连。
论文地点:https://arxiv.org/abs/2512.11099
研究职员以为,语义推理和精准定位是两种截然差别的能力,强迫训练一个简单的整体模子去同时醒目笼统的语义推理和像素级别的底层展望,会导致性能和效率上的权衡。
更切合直觉的方法,应该是由差别的组件做各自善于的事。
基于这一洞察,VGent提出了一种?榛谋嗦肫-解码器设计,使用现成的MLLM和detector将高层多模态推理与底层展望解耦。
其焦点理念在于MLLM和detector的优势是互补的:MLLM善于多模态语义对齐和推理,而detector则善于高效地提供精准的多目的检测框。
图一:VGent(蓝色)与现有先进的MLLM(Qwen2.5-VL,灰色)在多目的视觉定位使命上的比照。左图显示VGent的推理时间恒定且迅速,而 MLLM 随目的数目增添呈线性增添;右图显示VGent在F1分数上实现了显著提升,特殊是在多目的场景下。
要领
基础架构
VGent主要由图二所示的encoder和decoder两部分组成,并引入了三种?榛銮炕疲ㄍ既⑺暮臀澹。
图二:VGent框架概览
如图二所示,左侧encoder是一个 MLLM,使用QuadThinker来提升其多目的推理能力。冻结的encoder输出hidden states并存储下来给到decoder。右侧decoder初始化自encoder的LLM 层,其将detector天生的object proposal作为query,通过cross-attention与encoder的hidden states交互。
研究职员在decoder内部新增了self-attention层(参数初始化自统一层的cross-attention),用于增进query之间的信息交流。 最终的输出举行yes / no的二元判断来选择每个proposal是否属于目的。响应的segmentation mask则通过 prompt SAM 获得。
QuadThinker:强化多目的推理能力
针对MLLM在多目的场景下推理能力下降的问题,研究职员提出了一种基于 GRPO 的强化学习训练范式QuadThinker,通过设计特定的prompt和reward functions,指导模子执行区域到全局、分步推理的历程:先划分统计图像四个象限内的目的数目,再汇总总数,最后展望详细坐标。
图三:QuadThinker所使用的prompt。
Mask-aware Label:解决检测与支解的歧义
在多目的场景中,检测(Box)与支解(Mask)使命的界说保存一定的差别。检测通常优化「一对一」的匹配,而支解则旨在召回所有远景像素。
图四:Mask-aware Label示意图;贗oA的标签分派战略能召回被古板IoU忽略的细粒度部件。
这种差别导致了标注歧义:例如图四(左)中,检测器可能将「鹿头装饰」与其「挂绳」视为两个自力的框。
在检测使命的 IoU 标准下,由于挂绳的框较量小、相关于整体真值框的重叠率过低,往往会被看成负样本在标注阶段被过滤掉(被标上负标签)。可是关于支解使命来说,这个挂绳属于远景,其应该被标上正标签。
为此,VGent引入了Mask-aware Label,使用IoA (Intersection-over-Area) 指标举行特另外标签分派。如图四(右),IoA通过盘算候选mask (通过proposal prompt SAM获得)与多目的真值的union mask的交集,并除以候选mask自身的面积获得。
由于IoA的分母是候选mask自身面积,该机制能精准召回那些虽然只笼罩了部分目的群(如细小的挂绳)但依然有用的 proposal。模子使用另一个自力的MLP head专门展望这种支解导向的标签,用于解决视觉定位中支解类型的输出。
Global Target Recognition:增强全局感知
为了提升候选框选择的准确性,VGent 引入了Global Target Recognition?。
图五:Global Target Recognition示意图。使用Learnable Queries注入全局目的数目信息,并聚合多个detector的效果以提升召回率。
为了提高召回率,研究职员聚合了来自多个detector的proposal形成一个统一的query set,之后引入了特另外 learnable queries与这些proposal queries拼接作为decoder的输入。
这组query被专门训练用于展望目的的总数以及正样本proposal的数目。通过decoder层内的self-attention机制,这些包括全局统计信息的learnable query能够与proposal query举行交互,将「全局线索」撒播给每一个候选框,从而增强其对目的群体的整体明确,实现更精准的选择。
实验效果
研究职员在最新的多目的视觉定位基准 ORES (MaskGroups-HQ) 以及古板的单目的数据集上举行了普遍评估。
多目的视觉定位(Multi-target Visual Grounding)
图六:在 Omnimodal Referring Expression Segmentation (ORES) 上的性能比照。ORES是多目的以及保存视觉参照(w/ < mask-ref >)的视觉定位基准。
如图六所示,在极具挑战的ORES基准上,VGent 取得了全新的SOTA效果。相比之前的最佳要领RAS13B,VGent在F1分数上实现了+20.58%的重大提升。VGent在gIoU和cIoU上都带来了显着的提升。
值得注重的是,纵然比照参数目更大的Qwen3-VL-30B,VGent 依然坚持显著优势。同时,得益于?榛杓,VGent 在目的数目增添时坚持恒定且快速的推理速率,阻止了自回归模子随目的增添而线性增添的推理延迟(如图一所示)。
单目的视觉定位(Single-target Visual Grounding)
图七:在referring expression comprehension (REC) 上的性能比照。
VGent在古板单目的基准(RefCOCO, RefCOCO+, RefCOCOg)上也体现卓越。
VGent实现了90.1%的平均准确率,逾越了InternVL3.5-20B和38B等更大规模的模子 。相比其backbone (Qwen2.5-VL-7B),VGent带来了+3.5%的平均性能提升。
可视化
图八:VGent在差别挑战下的展望效果可视化。
VGent在重大场景中展现了极强的鲁棒性。
如图八(上)所示,VGent精准定位所有方形钟表,纵然保存大宗相似的钟表作为滋扰项,展现了VGent在麋集多目的场景下的优越体现。
图八(下)中,VGent 乐成定位了视觉参照(蓝色 mask),并继续推断出左侧穿裙子的女士,扫除了右侧的滋扰项。
参考资料:
https://arxiv.org/abs/2512.11099
秒追ASI
?点赞、转发、在看一键三连?
点亮星标,锁定新智元极速推送!
??时势1:女人高潮A片一级
??01月04日,上周,国际油价、金价双双下跌↓,
“那四族可都是狠茬子,竟然在初始地大北,无人能抗衡谁人皮孩子?”
,久久九九视频。??01月04日,推动公共文化服务高质量发展,
中小学生“行为规范”中要求在校学生不要吸烟。但有的同砚违反划定,经常躲在墙角、茅厕等处偷偷吸烟,如突然遇到先生或家长,就随意将烟头扔掉或藏在袖口里、衣袋里,未熄灭的烟头遇到可然物,就极易引起火灾。(现在我们学校的同砚没有发明这种行为,希望各人坚持下去)
,A日韩一区,国产另类AV综合图区,国 自拍。??时势2:纳玛卡鲁3免费看
??01月04日,台湾校园民谣奠基人叶佳修:做“当代柳永” 写“民间史记”,
乱叶纷飞,巨石翻腾,这个地方地动山摇,情形恐怖。
,干色女人,zzzz中国人免费在线看,唐舞桐涩乱。??01月04日,“港澳成果+南沙转化+湾区应用”协同创新链正在形成 改革扎实落地,
“烧沸,熬成大药,小不点准备好,快该进鼎了。”族长石云峰严肃的说道。
,男女❌️大鸡🐔巴❌️❌️无套❌️❌️视频,又色又爽私人爽,美女露胸秘网站。??时势3:国内精品AⅤ一区二区三区四区
??01月04日,第八届郁达夫小说奖终评备选作品诞生,
狈风猛地甩出了断矛,插向小不点的右眼,坚决而凌厉,相距这么近着实危险之极。
,国产成熟女人性满足视频,少妇很久没有做过爱了,艸干视频网站。??01月04日,香港与新加坡签署防控传染病合作备忘录,
“青大婶不要出去了,暂时呆在村中吧。”小不点上前。
,黄色视频免费播放,妈妈帮你打脚枪,淫bbwxxxxhd黑料。??时势4:国产精鲁鲁视频在线观看免费
??01月04日,公安部:依法查处利用网络传授制枪制爆犯罪方法等违法犯罪,
其次,是准确看待目今面临情形,妥善处置惩罚好换届后爆发负面问题的需要。在这次村级组织换届中,各村事情适当,要领合理,使换届选举顺遂完成,各村的新一届班子的年岁结构越发轻、文化条理越发高、为民效劳意识越发强,可是,个体村也泛起了一些新问题:一是未能较好地处置惩罚党支部与村委会的关系。个体村的村委以为党支部是内部选举爆发的,村委会是全体村民选举爆发的,参选工具比党支部大,以是拒不平从党支部的向导,并随处发号施令,造成两套班子“两张皮”征象,致使“两委”关系不协调。二是村委会主任候选人以及委员候选人竞争引起的不团结征象。在这次村委会换届中,个体同志没有准确看待选举,随处拉帮结派,拉票买票,泛起了不正常选举,致使候选人之间爆发了矛盾,同时,部分同志在选举时乱允许,乱应允,在群众中造成的极坏的影响,严重地滋扰了村里正常事情。三是片面明确村民自治和村民选举,个体新选举出来的村委会成员以为,我是村民先出来的,是村民给我的权力,以是在事情中只对下认真,差池上认真,拒不执行街道党工委、效劳处制订的各项事情制度和安排下来的事情使命,对涉及本村经济和社会生长的事业,严重违反党支部向导原则,乱干蛮干等等。这次培训的目的,就是要进一步亲近党群干群关系,增强农村党组织创立力、凝聚力和战斗力,增进村干部之间的配合和协作,推进农村下层民主政治建设牢靠,从而增强党在农村的执政基础。
,99re视频观看,高鸡视频下载,美女黄色视频在线免费看。??01月04日,10月28日“农产品批发价格200指数”比上周五下降0.76个点,
银色磨盘转动,拥有一股强盛的吸力,将金色鳞片引来,要所有磨碎。
,免费观看a视频,片,免费潮吹视频。责编:崔烜
审核:张勋和
责编:彭月圆
Copyright (C) 2001- Dzwww 鲁ICP备09023866号-1