
更多免费好看黄色网站2025官方最新版本下载
详情先容
更多免费好看黄色网站电视版下载是一款模拟谋划战略游戏,该版本玩家可以直接通过安卓模拟器在电脑上装置体验。该游戏接纳唯美的水墨画风,将中国风元素融入游戏场景,为玩家带来极致的视觉享受,让您陶醉其中,感受Q8X2R7L1T4J5M9B6W3之美。在游戏中,玩家将饰演一位祖师,开宗立派,作育一众有趣的学生,资助他们渡劫成仙。每位学生都拥有奇异的命格和属性,个性迥异,让您体验到千奇百怪的修仙生涯。
与此同时,更多免费好看黄色网站电视版下载还拥有奇异的挂机机制,您可以将游戏安排在后台,解放双手,让学生们自动修炼、渡劫,知心呵护您的修仙门派。宗门地产建设也是游戏的主要内容,您可以自由摆放,打造属于自己的修仙宗门,创立仙门人的理想家园。从山海异兽到一石一木,随处充满着古韵仙风,让您似乎置身于修仙小说般的瑶池之中。
致敬Kimi K2:基于slime的全流程INT4量化感知RL训练特色
受 Kimi K2 团队启发,SGLang RL 团队乐成落地了 INT4 量化感知训练(QAT) 流程计划。通过 “训练端伪量化 + 推理端真实量化(W4A16)” 的计划组合,我们实现了媲美 BF16 全精度训练的稳固性与训推一致性,同时 INT4 极致压缩也将 1TB 级超大模子的采样使命容纳于单机 H200 (141G) 显存内,消除了跨机通讯瓶颈,显著提高了 Rollout 效率,为社区提供了兼顾高性能与低本钱的开源参考。
近期,SGLang RL 团队在强化学习的训练稳固性,训练效率与适用场景方面取得了主要希望,详细包括:
Unified multi-turn VLM/LLM 多轮采样范式:我们提供了 VLM 多轮采样范式的实现blog,开发者只需编写一套定制化的 rollout 函数,即可像训练 LLM 一样,轻松开启 VLM 的多轮强化学习。稳固性提升:我们实现了Rollout Router Replay机制,显著提升了 MoE 模子在 RL 训练历程中的稳固性。低精度训练:我们在 RL 场景中乐成实现了全流程 FP8 训练与采样,进一步释放了硬件性能。投契采样:我们在 RL 场景中乐成实践了投契采样,实现了大规模训练的无损加速。
在此基础上,我们更进一步,在 slime 框架上乐成复现并落地了INT4 量化感知训练(QAT)全流程计划。该计划深受 Kimi 团队 K2-Thinking 手艺报告中关于W4A16 QAT (Quantization-Aware Training)实践的启发。为了致敬先行者并回馈社区,本文将详细剖析我们在开源生态中买通全流程的手艺细节,旨在为社区提供一份兼顾稳固性与性能的可落地参考。
焦点收益概览:
突破显存瓶颈:通过权重压缩与低比特量化,使 1TB 级别的 K2 类模子能缩容至单机 H200 (141G) 显存内,阻止了跨机通讯瓶颈。训推一致:训练端使用 QAT 确保权重切合 INT4 漫衍,推理端执行 W4A16 (Weights INT4, activations BF16 ) 盘算;二者均通过 BF16 Tensor Core 举行运算,实现了媲美 BF16 全精度的训推一致性。单机效率倍增:在超大模子场景下,INT4 战略大幅降低了显存与带宽压力,Rollout 效率显著逾越 W8A8 (Weights FP8 , Activations FP8)。
本项目由 SGLang RL 团队、 InfiXAI 团队、蚂蚁集团 Asystem & 阿福 Infra 团队, slime 团队与 RadixArk Miles 团队联合完成。相关功效与 recipe 已经同步到了slime与Miles社区,接待各人试用与孝顺。我们也在更进一步向 MXFP8 与 NVFP4 提倡挑战。同时,由衷谢谢Verda Cloud为本事情提供的盘算资源。
1. 手艺计划概览
1.1 总体流程
我们实现了从训练到推理的完整 QAT INT4 闭环的计划,如下图所示:
图1 QAT INT4 全流程
在QAT 训练阶段,训练侧在维护 BF16 主权重(Master Weights)的基础上,前向撒播通过伪量化(Fake Quantization)引入量化噪声。所谓 “伪”,是指该办法并未真正将 BF16 数据类型转换为低精度的 INT4,而是坚持浮点盘算路径稳固,通过插入量化再反量化(Quant-Dequant)操作来模拟低精度的盘算。
详细而言,高精度权重在经由 “离散化映射到 INT4” 后被连忙还原,虽然其物理存储名堂仍为浮点,但数值精度已实质性降低。这种原值与还原值之间的差别引入了量化误差,在数学上等效于向网络注入了噪声,迫使模子在训练阶段就通过梯度更新去顺应这种精度损失。
反向撒播则使用STE (Straight-Through Estimator)手艺跳过了量化算子的不可导特征。量化历程的焦点操作是 “取整(Rounding)”,其数学形态为蹊径函数,导数在险些所有位置均为 0。这意味着在标准反向撒播历程中,梯度信号传导至此处会因“梯度消逝”而彻底中止,导致底层的主权重无法获得更新。
对此,STE 接纳了 “梯度透传” 战略:在反向撒播盘算时,将取整函数的导数界说为 1(即视为恒等映射)。这一机制相当于在不可导的 “断崖” 上架设了一座桥梁,让梯度能够越过取整层,有用回传至高精度的浮点权重,确保 QAT 训练链路的闭环。
在权重转换阶段,我们将训练收敛的 BF16 权重导出并执行真实量化(Real Quantization),将其转换为推理引擎适配的 INT4 名堂(如 Marlin)。
进入RL Rollout阶段,由 SGLang 加载 INT4 Weights 并执行高效的 W4A16(INT4 权重 x BF16 激活)推理,天生的履历数据(Experience)将回流至第一阶段用于下一轮 RL 训练,从而组成一个自洽的迭代闭环。
1.2 焦点战略选择
在量化名堂上,我们参考Kimi-K2-Thinking选用了INT4 (W4A16)计划。这主要思量到相比 FP4,INT4 在现有硬件(Pre-Blackwell 架构)上的支持越发普遍,并且业界已有成熟高效的 Marlin Kernel 实现。实验批注,在 1×32 量化 Scale 粒度下,INT4 动态规模富足、精度稳固,其性能与生态链路均已高度优化。作为工业界 “足够好(Good Enough)” 的量化标准,INT4 在性能、危害与维护本钱间实现理性平衡。虽然,我们后续也妄想在 NVIDIA Blackwell 系列硬件上进一步睁开 FP4 RL 的探索。
在训练要领方面,我们接纳了Fake Quantization 配合 STE的经典组合。通过维护 BF16 主权重,在前向盘算中模拟量化噪声,并在反向撒播时直通梯度,这种方法最洪流平地包管了低精度训练的收敛性与稳固性。
2. 训练侧:Megatron-LM 的伪量化刷新
2.1 Fake Quantization 与 STE 实现
图2
这一阶段的焦点目的是在训练历程中实时模拟量化误差,迫使模子 “学会” 顺应低精度体现。为此,我们接纳了Fake Quantization机制:只管权重在存储和更新时仍坚持高精度的 BF16 名堂,但在前向撒播的现实盘算中,会被暂时映射到 INT4 的精度规模加入运算。
详细实现上,我们在 megatron/core/extensions/transformer_engine.py 中的 _FakeInt4QuantizationSTE 类构建了焦点逻辑;诜肿樽畲缶灾稻傩卸炕―ynamic Quantization),模拟 INT4 的 [-7, 7] 数值规模及截断操作,但在盘算时仍使用 BF16 类型,仅引入量化误差。
而在要害的反向撒播环节,我们引入了STE机制,确保梯度能够直接穿透量化层,不经修改地回传以更新主权重,从而包管训练的一连性。
2.2 Fake Quantization 比照实验
为了验证 QAT 计划的须要性,并探讨训练与推理精度不匹配带来的详细影响,我们设计了一组消融实验,划分在 “开启 QAT INT4 训练,BF16 Rollout” 和 “关闭 QAT 训练,直接举行 INT4 Rollout” 两种非对称场景下举行了测试,并以对数概率绝对差值(Logprob Abs Diff)作为训推纷歧致的视察指标。
图3 Rollout 侧 BF16,训练侧比照 QAT INT4 效果
图3展示了 “开启 QAT INT4 训练,BF16 Rollout” 的场景(即红线部分)?梢钥吹,纵然我们使用了高精度的 BF16 举行推理,误差依然显著偏高。这是由于在 QAT 历程中,模子权重已经针对 INT4 的量化噪声举行了 “顺应性调解” 或赔偿;推理时若移除量化办法,这种赔偿反而成为扰动,导致特征漫衍偏移(Distribution Shift)。
图4 Rollout 侧 INT4 Weight Only,训练侧比照 QAT INT4 效果
图4则展示了 “关闭 QAT 训练,直接举行 INT4 Rollout” 的场景(即红线部分)。这对应了古板的训练后量化(PTQ)模式。由于模子在训练阶段从未接触过量化噪声,直接将权重压缩至 INT4 不但造成信息的强烈丧失,更导致推理时的特征漫衍与训练时爆发偏移,致使误差随着训练步数泛起震荡上升的趋势。
结论:实验有力地证实,训练端的 Fake Quantization 与推理端的 Real Quantization 必需协同开启。只有当训练时的模拟噪声与推理时的真实量化精度严酷对齐,才华有用抑制训推纷歧致,阻止漫衍偏移,将误差控制在靠近基线的水平,从而真正买通低精度 RL 训练的全流程。
3. 权重更新阶段
3.1 权重流转与动态名堂适配
图5
为了复用 SGLang 在推理端已有的优化,我们直接接纳了其内置的Marlin INT4作为 INT4 的推理计划。然而,这在工程落地时我们遇到了显著的 “名堂鸿沟”:QAT 训练产出的是类似 Hugging face 上的标准名堂权重,而 SGLang 推理引擎的 Marlin Kernel 则强制要求权重必需经由特定的打包(Pack)与重排(Permute)处置惩罚,方能被 Kernel 高效读取。
面临 RL 训练中频仍的权重更新需求,首先需要解决名堂兼容性问题。为此,我们设计了一套逆向的 `restore_weights_before_loading`;せ。该机制使用缓存的 `_original_shapes` 元数据,能够在权重更新行动爆发前,强制将目今内存中的 Marlin 权重名堂还原(Resize)回原始形状。这一设计有用避免了因维度不匹配导致的运行时过失,确保模子能够在标准权重名堂与 Marlin 权重名堂之间平滑切换。别的,我们还在系统层面新增了 `post_process_weights` API,允许控制平面凭证训练节奏显式触发这一流程。
而针对权重加载完成后的名堂适配挑战,我们在 `compressed_tensors_moe.py` 中实现了一套动态权重治理机制。在模子权重加载竣事阶段,系统会自动触发 `process_weights_after_loading` 流程,底层挪用 `gptq_marlin_moe_repack` 与 `marlin_moe_permute_scales` 等算子,在内存中即时将标准权重转换为高度优化的 Marlin 权重名堂,从而最大化推理时的访存与盘算效率。
3.2 权重更新时的量化
图6
进入焦点的Real Quantization环节。差别于训练时的 Fake Quantization,这一步通过代码中的 `int4_block_quantize` 函数执行不可逆的精度压缩操作:基于设定的 Group Size,盘算每组权重的缩放因子(Scale),并将高精度浮点数映射到 `[-7, 7]` 的 INT4 整数域。
为了最大化显存使用率,接着执行位宽打包(Packing)操作。由于 PyTorch 缺乏原生的 INT4 数据类型,我们通过 `pack_int4_to_int32` 函数使用位运算技巧,将 8 个 INT4 数值紧凑地 “压缩” 进 1 个 INT32 整数中(即 `8 × 4 bits = 32 bits`)。最终,这些经由压缩的 Packed Weights 连同 Scale 因子被传输至推理引擎,完成了从 “训练名堂” 到 “推理名堂” 的转换。
4. 推理阶段
图7
极简打包与零开销解包
在 RL 训练的 Rollout 阶段,我们直接复用了 SGLang 优化成熟的 W4A16 量化计划。SGLang 使用紧凑的 INT4 名堂,将两个 4-bit 权重打包进一个字节,相比 BF16 节约了 75% 的内存。在推理时,Triton kernel 通过高效的位移和掩码操作(>> 4 和 & 0xF)快速解包,得益于盘算与 IO 的并行笼罩,该历程险些实现了零特殊延迟。
MoE 算子深度融合
显存优化:SGLang 引入动态的 moe_align_block_size,凭证目今 Token 数目和 Expert 漫衍自动选择 block_size ,将统一 Expert 的 Token 群集并对齐,提升显存带宽使用率。盘算融合:SGLang 引擎除集成磷七效的Marlin INT4实现、还将 gating 部分 fuse 成一个高性能的 kernel,阻止了重复启动 kernel 和读写中心效果。同时,该 INT4 推理计划兼容 GPTQ 和 AWQ 等主流量化名堂,以及支持对称与非对称两种模式。
5. INT4 QAT RL 效果
5.1 训练效果
训练侧
图8 Qwen3-235B-A22B Raw-Reward比照
图9 Kimi-K2-Thinking Raw-Reward比照
上图展示了基于 slime 框架,Qwen3-235B-A22B 与 Kimi-K2-Thinking 模子在 dapo-math-17k 数据集上的训练体现。通过比照实验发明,相较于 “BF16 训 - BF16 推” 及 “BF16 训 - FP8 推”,“BF16 训 - INT4 推” 设置下的 Raw-Reward 仍能坚持稳健增添,且其增添趋势与前两者基本一致,证实晰该计划在训练历程中的有用性。
评估侧
图10 Qwen3-235B-A22B AIME数据集评估比照
图11 Kimi-K2-Thinking AIME数据集评估比照
为了越发严谨地评估模子能力的演进,我们每隔 10 个训练步长就在 aime-2024 基准测试集上举行一次评估。上图给出了 Qwen3-235B-A22B 与 Kimi-K2-Thinking 在差别 RL 训练设置下的模子评分增添轨迹。
实验批注:“BF16 训 - INT4 推” 计划不但在评估分数上泛起出稳健的上升态势,且其性能提升的斜率与最终抵达的峰值,均与 “BF16 训 - BF16 推” 和 “BF16 训 - FP8 推” 计划坚持了较高的重合度。这种高度的一致性有力地证实晰模子在经由低比特量化后,其焦点体现能力并未受损,包管了在大幅降低盘算开销的同时,依然能够实现与全精度推理相媲美甚至完全看齐的泛化体现。
5.2 训推差别
图12
图13
为了直观评估计划效果,我们在 Qwen3-30B 与 Qwen3-235B 模子上举行了的 QAT RL 训练验证。图中 Y 轴反应了训练侧与推理侧输出的 Logprob 绝对差值,数值越低意味一致性越强。实验效果显示,INT4(绿色虚线)与 BF16 基准(红色实线)泛起出惊人的重合度,且显著低于体现出较高误差水平的 FP8(蓝色虚线)。这证实了 INT4 QAT 战略能有用规避 “BF16 训 - FP8 推” 模式下的精度损失,实现与全精度无异的训推体现。
这种一致性背后的缘故原由我们推测为两点:
截断误差抑制:训练侧的 Fake Quantization 将权重限制在 INT4 值域内。这种数值规模的约束,有用降低了矩阵乘法中 Accumulator 累加时因并行盘算顺序不确定性引发的浮点舍入误差(Floating-point Rounding Error),即改善了所谓的“大数加小数”精度丧失问题。高精度盘算:推理侧接纳 W4A16 模式,其焦点盘算全程基于BF16 Tensor Core举行,确保了运算精度与训练阶段的高度对齐。
5.3 Rollout 加速
图14 Qwen3-235B-A22B Rollout 性能比照
从 Qwen3-235B 的 Rollout 性能比照图中可以直寓目到,虽然 INT4(绿色点划线)与 FP8(蓝色虚线)均较 BF16 基线(红色实线)实现了显著加速,但两者相互之间并未拉开重大的性能鸿沟。这一征象主要受限于目今的硬件特征:由于 NVIDIA H 系列 GPU 没有原生的 INT4 Tensor Core, W4A16 计划实质上使用的照旧 BF16 Tensor Core 举行盘算,虽然大幅降低了显存带宽压力,但在吞吐上无法像 W8A8 一样使用原生 FP8 Tensor Core 举行加速从而获得盘算增益。因此,在单步推理耗时上,INT4 仅体现出微弱的优势,与 FP8 基本处于统一性能梯队。
图15 Kimi-K2-Thinking Rollout 性能比照
关于 Kimi-K2-Thinking Rollout 性能的比照。首先视察双节点场景下的通讯瓶颈:图中 FP8(红线)与 INT4(蓝线)泛起出相似的水平。由于 H 系列 GPU 缺乏原生的 INT4 盘算单位,INT4 无法在盘算层面提供加速,因此整体性能依然受限于跨节点的通讯带宽。
然而,绿线所代表的单节点体现展现了 INT4 的真正价值 —— 显存压缩。通过将模子体积减半,我们乐成将 1TB 级别的超大模子完整加载至单机显存中。这直接消除了腾贵的跨机通讯开销,将 Rollout 耗时大幅缩减。这有力地证实,在目今硬件情形下,INT4 QAT 的焦点收益在于通过压缩显存,解锁了高效的单机安排 Rollout 计划。
6. 总结与未来事情
slime 的这项事情不但证实晰在开源生态中复现工业界前沿计划的可行性,也为超大规模模子的低本钱训练探索了新的路径。我们期望这套计划助力更多开发者深入明确 QAT 手艺,并推动其在 RL 场景下的现实落地与普遍应用。
通过在开源框架上的复现,我们验证了 Kimi 团队所提出的 INT4 QAT 计划的有用性:
精度复现:在 slime 的复现实验中,我们同样视察到了 INT4 QAT 的精度优势,实现了与 BF16 基线一致的效果。效率提升:RL Rollout 阶段的吞吐提升显著,验证了低比特量化在 RL 场景下的重大价值。
未来事情:
训练端效率优化:现在,由于在训练历程中引入了 QAT Fake Quantization 盘算,带来了较大的特殊性能开销,导致逊з度显着低于 BF16 模式。这在一定水平上折损了 Rollout 阶段带来的端到端性能收益。我们后续妄想提出一套全新的优化计划,旨在解决这一训练侧的效率瓶颈,实现全链路的加速。推理侧 FP4:随着 NVIDIA Blackwell 架构的逐步普及,我们将起劲探索 FP4 精度在 RL 训练与推理中的应用可行性,以期进一步挖掘硬件潜力。
slime 在 QAT INT4 的实验不但证实晰在开源生态中复现工业界前沿计划的可行性,也为超大规模模子的低本钱训练探索了新的路径。我们期望这套计划助力更多开发者深入明确 QAT 手艺,并推动其在 RL 场景下的现实落地与普遍应用。
致谢
SGLang RL Team: Ji Li, Yefei Chen, Xi Chen, BBuf
InfiXAI Team: Mingfa Feng, Congkai Xie, Shuo Cai
蚂蚁集团 Asystem & 阿福 Infra 团队:Yanan Gao, Zhiling Ye, Yuan Wang, Xingliang Shi
RadixArk Miles Team: Chenyang Zhao, Yueming Yuan, Jiajun Li, Yusheng Su, Mao Cheng, Tom, Banghua Zhu
slime Team: Zilin Zhu, Chengxing Xie, Lei Li, Haisha Zhao
游戏亮点
1、富厚多彩的修仙玩法
除了作育学生和建设仙门外,游戏还包括了炼丹、炼器、仙田等多种修仙玩法,让玩家体验到修仙的方方面面。
2、自由建设的仙门地产
玩家可以自由摆放修仙宗门的修建,打造属于自己的修仙家园,创立仙门人的理想天下。
3、细腻细腻的游戏画面
游戏的画面细腻细腻,每一个场景都充满了古典美感,让玩家似乎身临其境,感受到修仙之美。
4、社交互动的兴趣
游戏内置富厚的社交系统,玩家可以与其他玩家组成同盟,配合对抗强敌,体验多人相助的兴趣,增添了游戏的可玩性和意见意义性。
游戏评测
1、游戏玩法富厚,内容深度十足,给玩家带来了极佳的游戏体验。2、画面细腻,场景设计唯美,让玩家陶醉其中,感受到了修仙天下的奇幻美感。
3、挂机系统的设置知心适用,解放了玩家的双手,让玩家更轻松地享受游戏兴趣。
4、学生个性化塑造突出,每个学生都有自己奇异的故事和特点,增添了游戏的意见意义性和可玩性。
更新日志
v9.3.14版本
1.1调解问鼎苍穹席位赛的防守阵容设置规则,现在任何时间都可以调解防守阵容
1.2优化天道树意会道果时道果数目缺乏的获取提醒,现在会自动翻开道果宝箱,利便祖师快捷获取
1.3优化新增仙法问道投资活动的购置提醒,现在休赛期购置投资时,若是无法拿满奖励则会有二次确认提醒
1.4修复一连炼制同种丹药时,炼制质料的数目显示异常的过失
下载地点
- 电脑版
- /安卓版
- 外地下载通道:
- 仅下载APK文件
同类游戏

搬淫工av最新版下载 v6.5.2
欧美淫荡熟女激情套图视频看看完整版下载 v6.945.809928
久久久这里精品国产完整版下载 v6.2.16
久九久福利精品完整版下载 v6.2.2
一级欧美一级日韩片66网完整版下载 v6.1.17
先锋影音资源av在线网装置包下载 v6.2.16
打屁股实践视频手机版下载 v6.1.19
日韩在线免费视屏2025官方最新版本下载 v5.6.7
网友谈论
共0条谈论分类列表
- 体育竞技
- 休闲益智
- 赛车竞速
- 棋牌桌游
- 角色饰演
- 行动射击
- 谋划养成
- 战略塔防
- 冒险解谜
- 音乐游戏
- 儿童教育
类似游戏
-
国外性交网 v1.222.289931 休闲益智 / 3.6G
-
zjzjzjzjzjzjz中国免费官方版下载 模拟谋划 / 1.10MB
-
美女裸交PC端下载 角色饰演 / 6.89G
-
毛片网址是什么 v5.576.782924 模拟谋划 / 1.51MB
-
下面一进一出好爽视频PC端下载 角色饰演 / 2.8G
精彩发明
换一换-
欧美一级A片www v5.6.18
-
视频丨9l 丨大学生国产 v6.257.823198
-
欧美Va天欧美va天堂在线电影大全 v6.743.357391
-
福利导航婷婷九月展示 v2.575.519892
-
蔗糖官方职业入口 v5.2.12
-
欧美视频一区二区四区 v7.639.412614
精品推荐
-
中文字幕 在线 第一页 v8.6.6 谋划养成 / 187.14MB
审查 -
挤奶黑色网站 v4.756.353068 谋划养成 / 2.3MB
审查 -
最新无码国产在线视频2020了 v7.100.933597 谋划养成 / 9.88G
审查 -
羞羞漫画网页在线 v8.4.8 谋划养成 / 1.29MB
审查 -
初二好看女生的jiojio简介 v6.7.0 谋划养成 / 560.25MB
审查
专题推荐
巨人蹂躏H粗暴3d
性爱在线视频
美女禁a
a国产av网
- 免费看涩涩的网站h
- 国产青榴视频A片在线观看夜色
- aa理论片
- 日本爱爱视频爱涩网站
- 鉂屸潓馃崙
- 激情视频激情文学激情图片
本类排行
-
1
男女网2025官方最新版本下载审查
谋划养成 / 1.40MB
-
2
白白·cc电脑版下载「含模拟器」审查
谋划养成 / 685.27MB
-
3
欧美一级AA片免费看视频电视版下载审查
谋划养成 / 493.30MB
- 4 免费看鸡巴毛片A片 v6.915.558393官方版
- 5 欧美国产A片免费久久 v9.3.18
- 6 日aa视频 v5.3.4官方版
- 7 特黄男女交性A片激情视频 v8.119.246894
- 8 色就色综合网站 v6.8.18官方版
- 9 色色色色色中字 v9.7.3
- 10 欧美草小穴穴 v2.895.571181


精品三级片小视频网站 v8.858.487014
91露双乳无罩无裤写真 v9.344.283862
欧美熟妇乱子伦视频 v3.615.318786
搞黄刺激无遮挡网站 v2.123.577797
黄色在/线视频 v9.832.961497
国产理论视频在线观看 v7.406.126921
赣公网安备 36010602000087号