欧美性服务,无论你在哪,都能随时体验高速与便捷的服务

k1体育麻将胡了

搜索 猫眼影戏 融媒体矩阵
  • 山东手机报

  • 猫眼影戏

  • 公共网官方微信

  • 公共网官方微博

  • 抖音

  • 人民号

  • 天下党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

F1暴涨20分,推理速率恒定!新架构VGent:多目的定位又快又准

2026-01-03 13:17:40
泉源:

猫眼影戏

作者:

布鲁克纳

手机审查

  猫眼影戏记者 孙馨 报道Q8X2R7L1T4J5M9B6W3

新智元报道

编辑:LRST

【新智元导读】多目的(Multi-target) 以及 视觉参照(Visual Reference) 为视觉定位(Visual Grounding)使命的推理速率和性能同时带来了全新的挑战。 为相识决这一难题,来自UIC和Adobe的研究团队提出了VGent模子。这是一种兼顾速率与性能的?榛杓,旨在将模子的推理与展望能力解耦,并辅以多种?榛銮考苹 。最终,VGent依附不到16B的参数目,在多目的及带视觉参照的视觉定位基准(Omnimodal Referring Expression Segmentation, ORES)上,大幅逾越了Qwen3-VL-30B,实现了平均+18.24 F1的重大提升!

在多模态大模子(MLLM)时代,视觉定位是MLLM细粒度推理能力的主要一环,同时也是实现人机交互和具身智能的焦点能力。

现有的解决计划主要分为两类:

原生Token派(Native-token):像 Qwen2.5-VL 或 Ferret-v2 这样的模子,通过自回归(auto-regressive)的方法使用原有的词表逐个天生界线框坐标 。这种方法不但速率慢(推理时间随目的数目线性增添),并且在多目的场景下容易爆发幻觉(Hallucinations),即模子可能会在枚举完所有目的工具之前就过早阻止,或者在目的麋集的场景中陷入无限天生的死循环。如图一所示,随着目的数目的增添,这类要领在多目的场景下的低效和不稳固性变得尤为显着。

新增Token派(New-token):另一类要领实验通过引入特殊的token(如[SEG]或 object token)来指代目的物。他们需要网络大规模的数据集、从LLM起重新构建一个能明确这些新增token的MLLM。因此,这种要领不可阻止地会破损LLM在预训练阶段获得的通用推理能力。更严重的是,其导致无法直接使用现有的、先进的、举行了更大规模预训练的开源MLLM(如 QwenVL系列)。

来自UIC(伊利诺伊大学芝加哥分校) 和Adobe的研究团队提出一种?榛谋嗦肫-解码器(Encoder-Decoder)架构VGent,其焦点头脑是:将高层的语义推理交给MLLM,将底层的像素展望交给目的检测器(detector),最终通过hidden state将这种解耦后的关系举行毗连。

论文地点:https://arxiv.org/abs/2512.11099

研究职员以为,语义推理和精准定位是两种截然差别的能力,强迫训练一个简单的整体模子去同时醒目笼统的语义推理和像素级别的底层展望,会导致性能和效率上的权衡。

更切合直觉的方法,应该是由差别的组件做各自善于的事。

基于这一洞察,VGent提出了一种?榛谋嗦肫-解码器设计,使用现成的MLLM和detector将高层多模态推理与底层展望解耦。

其焦点理念在于MLLM和detector的优势是互补的:MLLM善于多模态语义对齐和推理,而detector则善于高效地提供精准的多目的检测框。

图一:VGent(蓝色)与现有先进的MLLM(Qwen2.5-VL,灰色)在多目的视觉定位使命上的比照。左图显示VGent的推理时间恒定且迅速,而 MLLM 随目的数目增添呈线性增添 ;右图显示VGent在F1分数上实现了显著提升,特殊是在多目的场景下。

要领

基础架构

VGent主要由图二所示的encoder和decoder两部分组成,并引入了三种?榛銮炕疲ㄍ既⑺暮臀澹。

图二:VGent框架概览

如图二所示,左侧encoder是一个 MLLM,使用QuadThinker来提升其多目的推理能力。冻结的encoder输出hidden states并存储下来给到decoder。右侧decoder初始化自encoder的LLM 层,其将detector天生的object proposal作为query,通过cross-attention与encoder的hidden states交互。

研究职员在decoder内部新增了self-attention层(参数初始化自统一层的cross-attention),用于增进query之间的信息交流。 最终的输出举行yes / no的二元判断来选择每个proposal是否属于目的。响应的segmentation mask则通过 prompt SAM 获得。

QuadThinker:强化多目的推理能力

针对MLLM在多目的场景下推理能力下降的问题,研究职员提出了一种基于 GRPO 的强化学习训练范式QuadThinker,通过设计特定的prompt和reward functions,指导模子执行区域到全局、分步推理的历程:先划分统计图像四个象限内的目的数目,再汇总总数,最后展望详细坐标。

图三:QuadThinker所使用的prompt。

Mask-aware Label:解决检测与支解的歧义

在多目的场景中,检测(Box)与支解(Mask)使命的界说保存一定的差别。检测通常优化「一对一」的匹配,而支解则旨在召回所有远景像素。

图四:Mask-aware Label示意图 ;贗oA的标签分派战略能召回被古板IoU忽略的细粒度部件。

这种差别导致了标注歧义:例如图四(左)中,检测器可能将「鹿头装饰」与其「挂绳」视为两个自力的框。

在检测使命的 IoU 标准下,由于挂绳的框较量小、相关于整体真值框的重叠率过低,往往会被看成负样本在标注阶段被过滤掉(被标上负标签)。可是关于支解使命来说,这个挂绳属于远景,其应该被标上正标签。

为此,VGent引入了Mask-aware Label,使用IoA (Intersection-over-Area) 指标举行特另外标签分派。如图四(右),IoA通过盘算候选mask (通过proposal prompt SAM获得)与多目的真值的union mask的交集,并除以候选mask自身的面积获得。

由于IoA的分母是候选mask自身面积,该机制能精准召回那些虽然只笼罩了部分目的群(如细小的挂绳)但依然有用的 proposal。模子使用另一个自力的MLP head专门展望这种支解导向的标签,用于解决视觉定位中支解类型的输出。

Global Target Recognition:增强全局感知

为了提升候选框选择的准确性,VGent 引入了Global Target Recognition?。

图五:Global Target Recognition示意图。使用Learnable Queries注入全局目的数目信息,并聚合多个detector的效果以提升召回率。

为了提高召回率,研究职员聚合了来自多个detector的proposal形成一个统一的query set,之后引入了特另外 learnable queries与这些proposal queries拼接作为decoder的输入。

这组query被专门训练用于展望目的的总数以及正样本proposal的数目。通过decoder层内的self-attention机制,这些包括全局统计信息的learnable query能够与proposal query举行交互,将「全局线索」撒播给每一个候选框,从而增强其对目的群体的整体明确,实现更精准的选择。

实验效果

研究职员在最新的多目的视觉定位基准 ORES (MaskGroups-HQ) 以及古板的单目的数据集上举行了普遍评估。

多目的视觉定位(Multi-target Visual Grounding)

图六:在 Omnimodal Referring Expression Segmentation (ORES) 上的性能比照。ORES是多目的以及保存视觉参照(w/ < mask-ref >)的视觉定位基准。

如图六所示,在极具挑战的ORES基准上,VGent 取得了全新的SOTA效果。相比之前的最佳要领RAS13B,VGent在F1分数上实现了+20.58%的重大提升。VGent在gIoU和cIoU上都带来了显着的提升。

值得注重的是,纵然比照参数目更大的Qwen3-VL-30B,VGent 依然坚持显著优势。同时,得益于?榛杓,VGent 在目的数目增添时坚持恒定且快速的推理速率,阻止了自回归模子随目的增添而线性增添的推理延迟(如图一所示)。

单目的视觉定位(Single-target Visual Grounding)

图七:在referring expression comprehension (REC) 上的性能比照。

VGent在古板单目的基准(RefCOCO, RefCOCO+, RefCOCOg)上也体现卓越。

VGent实现了90.1%的平均准确率,逾越了InternVL3.5-20B和38B等更大规模的模子 。相比其backbone (Qwen2.5-VL-7B),VGent带来了+3.5%的平均性能提升。

可视化

图八:VGent在差别挑战下的展望效果可视化。

VGent在重大场景中展现了极强的鲁棒性。

如图八(上)所示,VGent精准定位所有方形钟表,纵然保存大宗相似的钟表作为滋扰项,展现了VGent在麋集多目的场景下的优越体现。

图八(下)中,VGent 乐成定位了视觉参照(蓝色 mask),并继续推断出左侧穿裙子的女士,扫除了右侧的滋扰项。

参考资料:

https://arxiv.org/abs/2512.11099

秒追ASI

?点赞、转发、在看一键三连?

点亮星标,锁定新智元极速推送!

??时势1:日韩在线第一页

??01月03日,“该改的坚决改,不该改的不改”(思想纵横),

  开展了坚持共产先进性教育活动,共有个下层党组织,名加入了先进性教育活动,通过先进性教育,增强了党组织的凝聚力和战斗力,充分验展的先锋模范作用,增进了建设事业各项事情的周全生长。并连系坚持共产先进性教育活动,进一步增强向导班子和下层党组织建设,做好目的治理事情?沟撤缌ㄉ,认真落实党风廉政责任制,增强了宽大干部拒腐防变和抵御危害的能力。

,485y.com。

??01月03日,现场点交、包机货运 揭秘近800件埃及文物如何抵达上海,

  然而,就在今日,小孤山镇外人喊马嘶,铁甲灼烁,一群铁骑飞纵而来,穿过无限山脉,闯过种种凶物的领地,平安到了这里。

,强奸在线小视频,久久伊人狼人,18款成品短视频app下载量APP下载安装。

??时势2:好男人WWW.Com

??01月03日,外交部:维护全球产供链韧性和稳定符合国际社会的共同利益,

  小不点马上笑了,很开心,将它摆弄过来,翻转已往,玩的不亦乐乎。

,女学生喷浆 动漫下载,午夜无码A级毛片在线99,网址你懂的在线。

??01月03日,“梦想”号国际邮轮以三亚为母港首航,

  现实学习生涯中,理想就是目的。短期目的,恒久目的。好比:……

,欧美日韩三区二区三区二区,91性爱网址,CF手游孙尚香坐钢筋免费观看漫画。

??时势3:黄av在线

??01月03日,中企将在巴西北里奥格兰德州投建1兆瓦绿氢项目,

  他像是一个魔神,催动种种骨文与宝术,前方遗体成片大倒下,种种生灵的血溅起很高,落在其身上,早已成为了一个血人。

,www.麻豆av,天天做天天爽,色色色禁网址。

??01月03日,抗洪牺牲村支书李清学被评定为烈士,

  1、实时报警 ;鹪值缁昂怕胧119,你应该说出你的名字和火灾爆发的地点。

,三级片视频在线看,动漫男性脱 给我揉 亲嘴网站,日韩网站黄。

??时势4:星空mv天美mv梦幻mvapp下载-星空mv天美mv梦幻mvv32.3.56.3.3

??01月03日,(经济观察)市场是裁判员 中国新能源产品受国际青睐,

  2、千原理,万原理,落实好了就是硬原理。狠抓落实是我们的天职,只有落实好了,才华推行好我们的职责,体现历史付与我们的神圣使命。办教育不要眼能手低,不要说空话、假话,不要做不切合现实的事,不要违反教育纪律做事,任何有价值的工具和履历都是从课堂教学中来,到课堂教学中去,我们必需大兴调研之风、务实之风、学习之风,才华在抓落实中不走弯路、绕路,抵达事半功倍的效果?С醯较衷,中心学校安排了许多事情,每所学校都落实得较量到位,特殊是校园文化、宿舍文化都高标准、严要求,准时、按质、按量地美化了学生宿舍,安科村完小使用国庆长假完成了校园文化建设,规格很高,充分体现情形育人的功效。边远山区学校要搞好校园文化建设和学生宿舍美化需要支付许多,只管难题重重,照旧准期完成,真正做到了“只为落实想步伐,不把难题当捏词”。责任是学校生长最深的动力,我们必需清晰地意识到我是做什么的?应该怎么做?做到什么水平?才会在抓落实中体现我们肩上的责任和担子,我们没有更大的权力,只有一份沉甸甸的责任,为这一份责任必需政令流通,落实到位,学校事情才华按章有序顺遂举行。落实好了,就是生长好了,落实好了,就是效益好了。

,十八禁黄无遮挡吸乳视频网站,nc18嫩草入口页,🌸🌸精品国产🌸🌸白哲。

??01月03日,生漆“咬人”?其实是接触性皮炎,

  十几里外,狈村的人迅速群集,朝这个偏向冲来,其中有一具担架上面半躺半坐着一个少年,他神色有些惨白,眸光酷寒,手中正在把玩一条兽牙串。

,免费观看18视频网站下载,男人飞机杯视频秘,成 人免费va视频无码。

【“丝路古邑·锦绣都兰”亮相2024宁波国际旅游展】

【日服复合维生素可能减缓老人记忆力下降】

责编:约翰·桑顿

审核:李亚楠

责编:马扬蹄

相关推荐 换一换

Copyright (C) 2001-   dzwww.com. All Rights Reserved

新闻信息效劳允许证 - 音像制品出书允许证 - 广播电视节目制作谋划允许证 - 网络视听允许证 - 网络文化谋划允许证

山东省互联网传媒集团主理  联系电话:0531-85193202  违法不良信息举报电话:0531-85196540

鲁ICP备09023866号-1   鲁公网安备 37010202000111号  

Copyright (C) 2001- Dzwww   鲁ICP备09023866号-1

网站地图