(10秒全面认识)日日操人人操人人要安卓版v55.96.89.15.09.5.39-2265安卓网

k1体育麻将胡了

搜索 猫眼影戏 融媒体矩阵
  • 山东手机报

  • 猫眼影戏

  • 公共网官方微信

  • 公共网官方微博

  • 抖音

  • 人民号

  • 天下党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

F1暴涨20分,推理速率恒定!新架构VGent:多目的定位又快又准

2026-01-06 13:10:14
泉源:

猫眼影戏

作者:

卫生部长韦罗妮卡

手机审查

  猫眼影戏记者 梅静 报道Q8X2R7L1T4J5M9B6W3

新智元报道

编辑:LRST

【新智元导读】多目的(Multi-target) 以及 视觉参照(Visual Reference) 为视觉定位(Visual Grounding)使命的推理速率和性能同时带来了全新的挑战。 为相识决这一难题,来自UIC和Adobe的研究团队提出了VGent模子。这是一种兼顾速率与性能的模块化设计,旨在将模子的推理与展望能力解耦,并辅以多种模块化增强计划 。最终,VGent依附不到16B的参数目,在多目的及带视觉参照的视觉定位基准(Omnimodal Referring Expression Segmentation, ORES)上,大幅逾越了Qwen3-VL-30B,实现了平均+18.24 F1的重大提升!

在多模态大模子(MLLM)时代,视觉定位是MLLM细粒度推理能力的主要一环,同时也是实现人机交互和具身智能的焦点能力。

现有的解决计划主要分为两类:

原生Token派(Native-token):像 Qwen2.5-VL 或 Ferret-v2 这样的模子,通过自回归(auto-regressive)的方法使用原有的词表逐个天生界线框坐标 。这种方法不但速率慢(推理时间随目的数目线性增添),并且在多目的场景下容易爆发幻觉(Hallucinations),即模子可能会在枚举完所有目的工具之前就过早阻止,或者在目的麋集的场景中陷入无限天生的死循环。如图一所示,随着目的数目的增添,这类要领在多目的场景下的低效和不稳固性变得尤为显着。

新增Token派(New-token):另一类要领实验通过引入特殊的token(如[SEG]或 object token)来指代目的物。他们需要网络大规模的数据集、从LLM起重新构建一个能明确这些新增token的MLLM。因此,这种要领不可阻止地会破损LLM在预训练阶段获得的通用推理能力。更严重的是,其导致无法直接使用现有的、先进的、举行了更大规模预训练的开源MLLM(如 QwenVL系列)。

来自UIC(伊利诺伊大学芝加哥分校) 和Adobe的研究团队提出一种模块化的编码器-解码器(Encoder-Decoder)架构VGent,其焦点头脑是:将高层的语义推理交给MLLM,将底层的像素展望交给目的检测器(detector),最终通过hidden state将这种解耦后的关系举行毗连。

论文地点:https://arxiv.org/abs/2512.11099

研究职员以为,语义推理和精准定位是两种截然差别的能力,强迫训练一个简单的整体模子去同时醒目笼统的语义推理和像素级别的底层展望,会导致性能和效率上的权衡。

更切合直觉的方法,应该是由差别的组件做各自善于的事。

基于这一洞察,VGent提出了一种模块化的编码器-解码器设计,使用现成的MLLM和detector将高层多模态推理与底层展望解耦。

其焦点理念在于MLLM和detector的优势是互补的:MLLM善于多模态语义对齐和推理,而detector则善于高效地提供精准的多目的检测框。

图一:VGent(蓝色)与现有先进的MLLM(Qwen2.5-VL,灰色)在多目的视觉定位使命上的比照。左图显示VGent的推理时间恒定且迅速,而 MLLM 随目的数目增添呈线性增添;右图显示VGent在F1分数上实现了显著提升,特殊是在多目的场景下。

要领

基础架构

VGent主要由图二所示的encoder和decoder两部分组成,并引入了三种模块化增强机制(图三、四和五)。

图二:VGent框架概览

如图二所示,左侧encoder是一个 MLLM,使用QuadThinker来提升其多目的推理能力。冻结的encoder输出hidden states并存储下来给到decoder。右侧decoder初始化自encoder的LLM 层,其将detector天生的object proposal作为query,通过cross-attention与encoder的hidden states交互。

研究职员在decoder内部新增了self-attention层(参数初始化自统一层的cross-attention),用于增进query之间的信息交流。 最终的输出举行yes / no的二元判断来选择每个proposal是否属于目的。响应的segmentation mask则通过 prompt SAM 获得。

QuadThinker:强化多目的推理能力

针对MLLM在多目的场景下推理能力下降的问题,研究职员提出了一种基于 GRPO 的强化学习训练范式QuadThinker,通过设计特定的prompt和reward functions,指导模子执行区域到全局、分步推理的历程:先划分统计图像四个象限内的目的数目,再汇总总数,最后展望详细坐标。

图三:QuadThinker所使用的prompt。

Mask-aware Label:解决检测与支解的歧义

在多目的场景中,检测(Box)与支解(Mask)使命的界说保存一定的差别。检测通常优化「一对一」的匹配,而支解则旨在召回所有远景像素。

图四:Mask-aware Label示意图;贗oA的标签分派战略能召回被古板IoU忽略的细粒度部件。

这种差别导致了标注歧义:例如图四(左)中,检测器可能将「鹿头装饰」与其「挂绳」视为两个自力的框。

在检测使命的 IoU 标准下,由于挂绳的框较量小、相关于整体真值框的重叠率过低,往往会被看成负样本在标注阶段被过滤掉(被标上负标签)。可是关于支解使命来说,这个挂绳属于远景,其应该被标上正标签。

为此,VGent引入了Mask-aware Label,使用IoA (Intersection-over-Area) 指标举行特另外标签分派。如图四(右),IoA通过盘算候选mask (通过proposal prompt SAM获得)与多目的真值的union mask的交集,并除以候选mask自身的面积获得。

由于IoA的分母是候选mask自身面积,该机制能精准召回那些虽然只笼罩了部分目的群(如细小的挂绳)但依然有用的 proposal。模子使用另一个自力的MLP head专门展望这种支解导向的标签,用于解决视觉定位中支解类型的输出。

Global Target Recognition:增强全局感知

为了提升候选框选择的准确性,VGent 引入了Global Target Recognition模块。

图五:Global Target Recognition示意图。使用Learnable Queries注入全局目的数目信息,并聚合多个detector的效果以提升召回率。

为了提高召回率,研究职员聚合了来自多个detector的proposal形成一个统一的query set,之后引入了特另外 learnable queries与这些proposal queries拼接作为decoder的输入。

这组query被专门训练用于展望目的的总数以及正样本proposal的数目。通过decoder层内的self-attention机制,这些包括全局统计信息的learnable query能够与proposal query举行交互,将「全局线索」撒播给每一个候选框,从而增强其对目的群体的整体明确,实现更精准的选择。

实验效果

研究职员在最新的多目的视觉定位基准 ORES (MaskGroups-HQ) 以及古板的单目的数据集上举行了普遍评估。

多目的视觉定位(Multi-target Visual Grounding)

图六:在 Omnimodal Referring Expression Segmentation (ORES) 上的性能比照。ORES是多目的以及保存视觉参照(w/ < mask-ref >)的视觉定位基准。

如图六所示,在极具挑战的ORES基准上,VGent 取得了全新的SOTA效果。相比之前的最佳要领RAS13B,VGent在F1分数上实现了+20.58%的重大提升。VGent在gIoU和cIoU上都带来了显着的提升。

值得注重的是,纵然比照参数目更大的Qwen3-VL-30B,VGent 依然坚持显著优势。同时,得益于模块化设计,VGent 在目的数目增添时坚持恒定且快速的推理速率,阻止了自回归模子随目的增添而线性增添的推理延迟(如图一所示)。

单目的视觉定位(Single-target Visual Grounding)

图七:在referring expression comprehension (REC) 上的性能比照。

VGent在古板单目的基准(RefCOCO, RefCOCO+, RefCOCOg)上也体现卓越。

VGent实现了90.1%的平均准确率,逾越了InternVL3.5-20B和38B等更大规模的模子 。相比其backbone (Qwen2.5-VL-7B),VGent带来了+3.5%的平均性能提升。

可视化

图八:VGent在差别挑战下的展望效果可视化。

VGent在重大场景中展现了极强的鲁棒性。

如图八(上)所示,VGent精准定位所有方形钟表,纵然保存大宗相似的钟表作为滋扰项,展现了VGent在麋集多目的场景下的优越体现。

图八(下)中,VGent 乐成定位了视觉参照(蓝色 mask),并继续推断出左侧穿裙子的女士,扫除了右侧的滋扰项。

参考资料:

https://arxiv.org/abs/2512.11099

秒追ASI

?点赞、转发、在看一键三连?

点亮星标,锁定新智元极速推送!

??时势1:操12岁嫩小妞网站在线看免费版

??01月06日,道中华丨citywalk 成都,

  3、关注后进生,我们初三年级的西席要在情绪教育上多下功夫,要对后进生做到有爱心、仔细、耐心;在教育教学上,提问优先,作业修正优先,表扬奖励优先;要善于挖掘他们的闪光点,培植起步点,掌握重复点,增进奔腾点;看待后进生不歧视,从而有用地包管后进生提高,起劲做到不放弃任何一名学生,提高学校的整体及格率。

,永久免费男男在线观看全网站。

??01月06日,港珠澳大桥海事局推出政务预约远程办理,

  圣药是什么工具?生死人肉白骨,遍寻百万里大荒难寻一株!要知道,即便有,也都在远古神山上,那些地方可能有真犼盘踞,有纯血金翅大鹏筑巢,没有人敢邻近,不然必死无疑。

?第一百零五章 磨练竣事【第三更】,美女的,永久观看黄色视频的网站,男女被 到爽 流白浆动漫。

??时势2:国产 中文 制服丝袜 另类

??01月06日,国台办:“台独”是绝路,“台独”分子是秋后的蚂蚱,

  “你可以试试。”一些人人嘿嘿地说道。

,色色色地址,人人双,人人操,久碰网站。

??01月06日,沉浸式戏剧《9号秘事》北京限定版登台,

  二是要领要适当。各人可能都有这么一个体会,同样加入学习,有的收获较量显着,有的却收效甚微,这就保存一个学习要领是否适当的问题了。怎样捉住难堪的学习时机,抵达事半功倍的效果,我的体会是,要带着问题学,要连系现实学。学习的目的在于运用。关于自己事情中遇到的现实问题,在学习时要有意识、有重点的多学、多看、多研究,一直提高解决现实问题的能力。

,玖玖综合视频在线观看,黄片在线播放一区,人人操人人摸人人干人人。

??时势3:91丝袜兔崽爱喷水 羞羞网站

??01月06日,巴厘岛静居日:从“怪兽”狂欢到“静默”新年,

  十五年,在漫长的历史长河中,只是短短的一瞬间。然而,关于来说,却是一部充满机缘与挑战、拼搏与贡献的创业史。俗话说,“十年树木,百年树人”,建设十五年来,在全体员工的配合起劲下,由小到大,从弱到强,从一个默默无闻的小工厂生长成为行业的佼佼者。一最先只有几台装备和十几名职工,到现在成为拥有职工上百人,品种上百的中型企业;产品也从简单的到品种富厚的;产品热销天下各大中小都会,甚至通过边贸口岸远销外洋。我们的产品徐徐被用户认可,销量逐渐递增,市场客户稳固,企业实力日益雄厚,这些都是我们各人配合起劲的效果,也是对全体*人辛勤支付的最好回报!关于这些,作为一个厂长,对各人的支付和起劲我都看在眼里,在这里,我可以自豪地对各人说,我为你们感应自满,感应自豪!

,黄色性爱网址,26uuu偷拍 亚洲 欧洲 综合,蓝莓破解版2025最新版无广告。

??01月06日,赣州国际陆港首列脐橙出口班列开行 助力脐橙“卖全球”,

  “喀嚓”声时时传来,有时无意还会传来铿锵声,迸发出一串串火星,木质着实太坚硬了。

,国产黄网免费观看在线视频国产,欧美性爱在线观看电影,精神小妹1v7精神小伙最后怎么样了。

??时势4:小辣椒福利视频导航

??01月06日,在玉雕国魂中共享文化大餐 电视剧《宣武门》热播,

金条逾期三个月起诉吗,会怎么样
,日韓肏屄视频,jizz黄色在线,真实破处AV。

??01月06日,越南驻华大使馆举行庆祝两国建交74周年招待会,

  “唔,对了,谁人破烂的庄子中有什么新闻吗?”中年人回过神来后,问旁边的一名管事。

,偷窥XXX盗摄凸凹妇产,国产色哟哟精选在线观看,大黄视频网站。

责编:李陪陈

审核:张轸刚

责编:汤志涛

相关推荐 换一换

    Copyright (C) 2001-   dzwww.com. All Rights Reserved

    新闻信息效劳允许证 - 音像制品出书允许证 - 广播电视节目制作谋划允许证 - 网络视听允许证 - 网络文化谋划允许证

    山东省互联网传媒集团主理  联系电话:0531-85193202  违法不良信息举报电话:0531-85196540

    鲁ICP备09023866号-1   鲁公网安备 37010202000111号  

    Copyright (C) 2001- Dzwww   鲁ICP备09023866号-1

    网站地图