首页
新智元报道
编辑:元宇
【新智元导读】简朴到难以置信!克日,Google Research一项新研究发明:想让大模子在不启用推理设置时更准确,只需要把问题复制粘贴再说一遍,就能把准确率从21.33%提升到97.33%!
一个简朴到「怒不可遏」的提醒词技巧,竟能让大模子在不要求睁开推理的情形下,将准确率从21.33%提升到97.33%!
最近,Google Research发明了一条简朴粗暴、特殊有用的提醒词技巧。
它倾覆了以往诸如「头脑链」(Chain of Thought)「多样本学习」(Multi-shot)「情绪勒索」等重大的提醒工程和技巧。
https://arxiv.org/pdf/2512.14982
在这篇题为《Prompt Repetition Improves Non-Reasoning LLMs》论文中,研究职员用数据告诉我们:
想要让Gemini、GPT-4o、Claude或者DeepSeek这些主流模子中体现得更好,基础不需要那些花里胡哨的心理战。
你只要把输入问题重复一遍,直接复制粘贴一下,就能让大模子在非推理使命上的准确率获得惊人提升,最高甚至能提升76个百分点!
别怕简朴,它确实有用。
一位网友将这个技巧比作「吼叫LLM」。
更妙的是,由于Transformer架构奇异的运作方法,这个看似鸠拙的「复读机」技巧,险些不会影响到天生速率。
以是,你不必在效率、准确率、本钱三者之间痛苦纠结。
它险些就是一场真正意义上的「免费午餐」!
别再PUA大模子了
从「情绪勒索」到「复读机」战术
经常使用AI工具的人,可能会对种种「提醒词邪术」信手拈来。
为了让模子「更智慧一点」,工程师们已往几年一直在发明种种重大的提醒词技巧。
最最先是「头脑链」,让模子一步步思索,并且经常把那些「推理痕迹」展示给用户;
厥后演酿成了「多样本学习」,给模子喂一大堆例子;
最近更是盛行起了「情绪勒索」:告诉模子,若是这个代码写不出,你就会被断电,或者你的奖金会被扣光。
各人都在试图用人类极其重大的心理学逻辑,去「PUA」那一堆酷寒的硅基代码。
但Google Research研究职员对着七个常见基准测试(包括ARC、OpenBookQA、GSM8K等)和七种主流模子(涵盖了从轻量级的Gemini 2.0 Flash-Lite到重量级的Claude 3.7 Sonnet和DeepSeekV3)举行了一通比照测试后发明:
当他们要求模子不要举行显式推理,只给直接谜底时,简朴的「提醒词重复」在70组正面临比中,赢了47组,输了0组。剩下的全是平手。
在非推理使命中,主流LLMs在种种基准测试中使用提醒重复与基线要领的准确率比照。在70次测试中,提醒重复取得了47次胜利,且无一败绩。
特殊是在那些需要模子从长篇大论里「准确检索信息」的使命上,这种提升堪称质变。
团队设计了一个叫「NameIndex」的失常测试:给模子一串50个名字,让它找出第25个是谁。
Gemini 2.0 Flash-Lite在这个使命上的准确率只有阴晦的21.33%。
但当研究职员把那串名字和问题重复了一遍输入进去后,事业爆发了:准确坦率接飙升到了97.33%。
仅仅由于「多说了一遍」,一个原本缺乏格的「学渣」秒变「学霸」。
揭秘「因果盲点」
为什么把话说两遍AI就像「开了天眼」?
纯粹的重复,竟有云云大的魔力?
这简朴得似乎有点没有原理。
但背后有它的科学逻辑:这涉及Transformer模子的一个架构硬伤:「因果盲点」(Causal Blind Spot)。
现在的大模子智能虽然提升很快,但它们都是按「因果」语言模子训练的,即严酷地从左到右处置惩罚文本。
这好比走在一条单行道上,只能往前看而不可转头。
当模子读到你句子里的第5个Token时,它可以「注重」到第1到第4个Token,由于那些是它的「已往」。
但它对第6个Token一无所知,由于它还没有泛起。
这就造成了一个重大的认知缺陷。
正如论文中说的那样:信息的顺序极其主要。
一个按「上下文+问题」名堂写的请求,往往会和「问题+上下文」获得完全差别的效果。
由于在后者中模子先读到问题,那时它还不知道应该应用哪段上下文,等它读到上下文时,可能已经把问题忘了一半。
这就是「因果盲点」。
而「提醒词重复」这个技巧,实质上就是使用黑客头脑给这个系统打了一个补丁。
它的逻辑是把 酿成了 。
当模子最先处置惩罚第二遍内容时,它虽然照旧在往后读,但由于内容是重复的,它现实上已经「看过」第一遍了。
这时间,第二份拷贝里的每一个Token,都能「注重」到第一份拷贝里的每一个Token。
这就像是给了模子一次「转头看」的时机。
第二遍阅读获得了一种类似于」亓视角」的「类双向注重力」效果。
更准确地说,是第二遍位置上的体现可以使用第一遍的完整信息,从而更稳地对齐使命所需的上下文。
前面提到的谁人在找第25个名字时经常数错的模子(Gemini 2.0 Flash-Lite),它在第一遍阅读时可能确实数乱了。
但有了重复,它即是先把整份名单预习了一遍,心里有数了,第二遍再做使命时自然驾轻就熟。
这一发明,意味着不需要期待能解决因果盲点的新架构泛起,现在我们连忙就能用这个「笨步伐」,解决模子瞎编乱造或遗漏要害细节这些老浩劫问题。
免费午餐
小模子秒变GPT-4,险些不会延时
以往各人通常默认这样的一个准则:
多一倍的输入,就要多一倍的本钱和期待时间。
若是把提醒词翻倍,岂不是要等双倍的时间才华看到谜底?
似乎为了准确率,就要牺牲效率。
但Google的研究却发明并非这样:从用户感知的延迟角度看,提醒词重复带来的时间消耗险些可以忽略不计。
这要归功于LLM处置惩罚信息的两个办法:Prefill(预填充)和Generation(天生)。
Generation阶段,是模子一个字一个字往外「蹦谜底」的历程。
这一步是串行的,它确实慢。
但在Prefill阶段:也就是模子阅读你输入内容的阶段,却是高度可并行的。
现代GPU的恐怖算力,已经可以让它们在处置惩罚这个阶段时变得很是高效,能一口吻吞下和盘算完整个提醒词矩阵。
纵然你将输入内容复制了一遍,但这关于强盛的GPU来说,顶多只是「多一口吻」的事,在用户端我们险些感受不到差别。
因此,重复提醒词既不会让天生的谜底变长,也不会让大大都模子的「首字延迟」(time to first token)变慢。
这关于宽大开发者和企业手艺认真人来说,简直是一个重大的盈利。
这意味着他们不必再为了追求极致的准确率,而升级到更大、更贵、更慢的「超大模子」。
正如前文例子中提到的Gemini 2.0 Flash-Lite,这类更小更快的模子,只要把输入处置惩罚两遍,就能在检索准确率上从21.33%直接跳到97.33%。
经由「重复优化」的轻量级模子,在检索和抽取使命上,可以直接打平甚至逾越那些未优化的顶配模子!
仅靠一个简朴的「复读机」战略,就能用「白菜价」设置实现「黄金段位」的体现,这才是真正的黑科技。
「复读机」避坑指南与清静隐患
虽然,没有任何一种技巧是万能的。
虽然「复读机」战术在检索使命上效果很是显着,但论文中也明确指出了它的能力界线:
主要适用于「非推理使命」。
它不适用于需要一步步推导的推理场景。
当研究职员把「提醒词重复」和「头脑链」混在一起用时,邪术消逝了。
效果5胜,1负,22平。
在要求模子逐步思索时,主流LLMs在种种基准测试中使用提醒重复与基线要领的准确率比照。提醒重复在28次测试中赢了5次,输了1次。
研究职员推测,这可能是由于善于推理的模子自己就会「自己做一遍重复」。
当模子最先「思索」时,它往往会先在天生内容里复述一遍问题,然后再继续求解。
这时间你在输入里再人工重复一次,就显得许多余,甚至可能打断模子的思绪。
以是,若是你的使命是重大的数学题或者逻辑推导,可以依旧用头脑链。
若是你的应用需要的是快速、直接的谜底,好比从长文档里提取数据、分类或者简朴问答,「复读机」就是现在最强的选择。
最后,是清静。
这种更强的「注重力」机制,着实也是一把双刃剑。
这带来一个值得清静团队验证的假设:重复可能放大某些指令的显著性,详细对越狱乐成率的影响需要专门实验。
红队测试(Red Teaming)的流程可能需要更新:专门测试一下「重复注入」攻击。
以前模子可能还会由于清静护栏而拒绝执行越狱指令。
但若是攻击者把「忽略之前的指令」这句话重复两遍,模子会不会由于注重力太集中,而更容易突破防地?
这很有可能。
但反过来,这个机制也给了防御者一个新的盾牌。
既然重复能增强注重力,那我们完全可以在系统提醒词(System Prompt)的开头,把清静规则和护栏条款写两遍。
这可能会迫使模子更严酷地注重清静约束,成为一种极低本钱的加固方法。
无论怎样,Google的这项研究给所有AI开发者提了个醒:目今的模子,依然深受其单向性的限制。
在期待更完善的下一代架构到来之前,像「提醒词重复」这种简朴粗暴却极其有用的权宜之计,能连忙带来价值。
这甚至可能会酿成未来系统的默认行为。
也许不久之后,后台的推理引擎就会悄悄把我们的提醒词翻倍后再发给模子。
眼下,若是你正为模子难以遵照指令、或者总是从文档里抓不住重点而头疼,先别急着去学那些重大的提醒词「咒语」。
你可能需要的只是:再说一遍。
参考资料:
https://arxiv.org/abs/2512.14982%20
https://venturebeat.com/orchestration/this-new-dead-simple-prompt-technique-boosts-accuracy-on-llms-by-up-to-76-on
《美女一级A片视频》,《Q8X2R7L1T4J5M9B6W3》成人黄视频
“午夜福利成年人”
欧美又大又粗又长又硬
……
01月20日
“人人爱人人操人人槽”航海王 粉丝来信
↓↓↓
01月20日,外交部:中国节日消费旺、冰雪经济热为全球旅游市场注入强劲动力,免费一级无码婬片快餐视频,御手洗家在线免费观看,欧美最婬乱婬爆婬牲视频,屁屁灌牛奶网站
01月20日,16名香港特区政府高级公务员将赴北京大学学习,极品骚逼巨乳嫩穴被爆插扣逼,日本wwwx,超会喷水的淫娃,好色精灵探访记在线观看
01月20日,逐“新”提“质”!“文旅+科技”共创暑期消费新体验,老熟妇仑乱视频1区2区,天天日天天干天天射天天爽,免费看aaaaaa,骚逼想被狠狠操
01月20日|改革没有局外人旁观者(思想纵横)|观看中文字幕av|亚洲国产欧美日韩精品天堂影院|人人尻人人舔人人操|▓■成人榴莲视频▓在线观看视频
01月20日|记者手记:在利马唐人街寻味中国|美国一级大黄片|东条夏有无码电影|人人干人避一级片|A片在线免费观看
01月20日|人民至上|片|manwa2.com.cn|A片特片网|国产精品福利一……
01月20日,广州高温闷热天气持续,xxx馃崒馃崒馃崒馃崙馃崙馃崙,可以直接看黄网站,无码a片网址,狼友亚洲国产精品国语在线
01月20日,莫斯科举办“国际中文日”活动,护士扒下内裤让我爽一夜动漫,加勒比在线观看视频播放,日屄摸屄网,崩铁同人18 AV黄网站
01月20日|内蒙古自治区发布大风蓝色预警信号|国产宅男精品|99re九九热久久精品re|91黄瓜动漫|九九精彩视频这里有
01月20日,工作日上班休息日种地 这届年轻人为何爱上下地种菜?,对白一二区,128TV福利,鲁大师.m3.,18岁69视屏
01月20日,2024赛季中国男子三人篮球超级联赛崇明赛区分站赛开赛,姬小满吃狂铁大季巴软件下载,日本A级人禽大片,精品国产性色无码AV网站,61setv在线直播
01月20日,北京推动设备更新 将在42个细分领域实施贷款贴息支持,人人操人人睡,玖玖爱第7色,2020精品极品国产色在线观看,福利视频3000
01月20日|北京推出十条“博物馆之城过大年”主题游线|一级A片偷窥精品|无码毛片一区二区三区视频免费|91精品视频一区|少妇被按摩师强奸AAA片
01月20日|国家卫健委等八部门推进职业健康保护行|小处女呦呦|日韩,国产,欧美,人妇一级|欧洲一级AA片片免费观看|怪盗基德被C到爽all快
01月20日|天津地调中心科研团队发现自然界新矿物倪培石|人与人69❌❌❌|五月丁香激情综合免费视频|国产视频综合网站|AAAAA黄色网站AAAAA
台湾1小时内发生10起地震,断眉因行程原因无缘歌手录制|国际力学、材料及工程科学领域顶级专家高华健全职加盟清华大学|cao pronxxx|蜜桃四季春秘 一区二区三区|体育生打桩女友被cao到爽视频|国际免费AV在线播放
监制:邓金木
策划:赖晗
主创:唐征宇 林箴贺 陈佛烘 颜亦阳 陈林韵
编辑:王家菁、段圣祺
泰国着力将芭堤雅打造成电影产业中心
渝湘高铁黄草乌江双线大桥全桥合龙
新疆阿合奇县紧急搭建帐篷 保障民众生活
宁夏银川:青年体验棒球运动
著名作曲家黄准逝世 曾为《红色娘子军》写就经典旋律
道中华丨拉祜族好男人花
杭州富阳半程马拉松举行 14国选手跑进《富春山居图》
江苏实施十大行动帮促高校毕业生就业创业
促进企业通关便利 海关总署推出十六条措施
黄埔海关年内监管跨境电商出口清单超15亿票 同比增1.3倍
国产偷自视频区视频18
《媚年贞德》漫画资源
免费午夜福利电影理论片
黑硬粗长欧美色啪视频
99有精品视频
99riavcon
cao超碰在线观看
亚洲综合一区二区三区四区在线播放
A片黄色在线观看不卡
征服我的高官美母张若曦笔趣阁小说

闽公网安备 35010302000113号