5060午夜少妇一级,甜美诱惑让你心动不已,快来感受那份独特魅力

k1体育麻将胡了

搜索 猫眼影戏 融媒体矩阵
  • 山东手机报

  • 猫眼影戏

  • 公共网官方微信

  • 公共网官方微博

  • 抖音

  • 人民号

  • 天下党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

MiniMax海螺视频团队首次开源:Tokenizer也具备明确Scaling Law

2025-12-28 01:33:16
泉源:

猫眼影戏

作者:

师伟

手机审查

  猫眼影戏记者 曾丽珍 报道Q8X2R7L1T4J5M9B6W3

MiniMax海螺视频团队不藏了!

首次开源就揭晓了一个困扰行业已久的问题的谜底——

为什么往第一阶段的视觉分词器里砸再多算力 ,也无法提升第二阶段的天生效果?

翻译成明确话就是 ,虽然图像/视频天生模子的参数越做越大、算力越堆越猛 ,但用户现实体验下来总有一种玄妙的感受——这些重大的投入与产出似乎不可正比 ,模子离完全真正可用总是差一段距离 。

So why?问题 ,或许率就出在视觉分词器(Tokenizer)这个工具身上了 。

当算力不再是谜底时 ,真正需要被重新审阅的 ,着实是天生模子的“起点” 。

在目今主流的两阶段天生框架中(分词器+天生模子) ,业界已经在视觉分词器的预训练上投入了大宗算力与数据 ,但一个尴尬的事实是:

这些本钱 ,险些没有线性地转化为天生质量的提升

而MiniMax海螺视频团队 ,不止挑战了这一现实——用实验证实“Tokenizer的scaling能够提升模子性能” 。

更要害的是 ,还带来了一款开箱即用、专为“下一代天生模子”打造的可扩展视觉分词器预训练框架——Visual Tokenizer Pre-training(以下简称VTP) 。

只需换上这个视觉分词器 ,即可在不改变下游主模子(如DiT)任何训练设置的情形下 ,实现端到端天生性能的倍数级提升 。

下面详细来看——

古板Tokenizer的缺陷:更好的重修≠更好的天生

要明确VTP保存的意义 ,首先我们需要回到更基础的问题上——

Tokenizer是什么?它又为何云云要害?

以AI生图为例 ,目今主流的生图模子险些清一色接纳了“两阶段”天生框架:

第一阶段(压缩):使用视觉Tokenizer(如VAE)这个组件 ,将原始图像压缩并映射到一个潜在空间(latent space)中;第二阶段(还原天生):再由以扩散模子为焦点的天生器(如DiT) ,在这个潜在空间中学习漫衍 ,并逐步还原、天生最终图像 。

用一张图来形容这个历程be like(先压缩后还原):

而Tokenizer ,就是在第一阶段中认真压缩图片信息的组件 。

若是没有这个组件 ,扩散模子就得直接在数百万像素组成的原始像素空间中举行“去噪”和天生——其盘算重漂后和内存开销将是天文数字 。

因此 ,Tokenizer称得上是让模子能够在消耗级显卡上运行起来的“要害元勋” 。

除此之外 ,Tokenize历程所得的低维潜在表征 ,其质量直接决议了最终天生图像的语义保真度、细节富厚度以及整体真实性 ,以是业界也普遍以为——

从某种水平上来说 ,Tokenize险些决议了后续天生模子的上限 。

基于此 ,人们在研究怎样提升下游天生模子的质量时 ,也不约而同地将重点放在了“怎样精准复刻原始像素”上 ,即要求模子将压缩后的潜在特征(latent)尽可能精准地还原为原始图像 。

而问题 ,也正出在这里 。

古板Tokenizer在追求“像素级重修”时 ,往往会太过着迷于捕获图像的局部纹理、噪点等低层信息 ,从而忽视了天生使命真正依赖的高层语义与整体结构 。

这就像学渣为了应付考试 ,只想着死记硬背种种试题 ,却完全不明确问题背后的知识点与逻辑结构 。效果真正到了需要闻一知十、解决新问题的时间 ,一下就傻眼了 。

在论文中 ,海螺视频团队将这一征象界说为“预逊放问题”(Pre-training Scaling Problem):

更好的像素级重修精度并不可带来更高质量的天生效果

如图所示 ,古板仅基于“重修”目的训练的Tokenizer(灰线) ,随着算力投入增添 ,模子的天生性能不但没有提升 ,反而逐渐趋于饱和甚至略微下降 。(ps:gFID权衡天生质量 ,越小越好)

由此 ,论文得出第一个要害发明:重修做得越好 ,天生反而可能越差 ;谎灾 ,古板VAE所依赖的纯重修训练范式 ,在面向天生使命时保存根天性局限 。

那么 ,VTP是怎样破局的呢?

VTP破局之道:从像素级重修到强调“明确力”的主要性

事实上 ,VTP并非横空出生 ,而是海螺视频团队在恒久实践中重复试错与认知迭代的产品 。

一些早期探索:从易学性到通用表征学习

在早期事情VA-VAE中 ,团队注重到:

有些“压缩后的特征”能让后续的扩散模子学得又快又好 ,而另一些则不可 。

基于此 ,他们提出了“易学性”这一看法——即差别的潜在表征(latents)关于下游天生模子的学习难度截然差别 ,并期望通过优化latent的某些“友好特征”(如匀称性、频域漫衍等)来间接改善天生效果 。

然而实践发明 ,这些要领虽有一定效果 ,却未触及实质 。按团队自己的话来说就是:

实验将易学性等价为可准确盘算的简单指标(例如频域漫衍、匀称性、scale稳固性、低秩效应等等)有些过于理想了 ,这些指标可能和易学性有一定关联 ,但远不是所有 。

就是说 ,当优化目的被限制在少数可丈量指标上时 ,模子往往只是学会了在特定指标上“刷分” ,而没有从基础上学会明确图像的结构与语义(实质上仍未脱离“重修”领域) 。

△在VA-VAE中 ,团队曾实验将易学性对应到latent漫衍的“匀称性”

而经由一连反思 ,团队逐渐意识到VA-VAE和厥后的许多实验 ,其深层目的并非仅仅是优化几个指标 ,而是在试图让latents具备某些更高级的“结构” 。其背后逻辑在于:

若是某种latents关于图像中的实体、位置关系具有高度结构化的表达 ,那么这种结构化表达关于下游diffusion建模来说也会更精练、更容易 ,这些方面的天生效果也自然会更好 。

这就好比另一种层面上的“大道至简”——当模子真正掌握了物体、关系与语义这些视觉天下的实质纪律时 ,它能应对的使命自然也就越多了(以稳固应万变) 。

因此 ,与其为“易学性”设计懦弱的署理指标 ,不如直接让Tokenizer去学习人类视觉系统自己所依赖的那种高度结构化、语义化的通用表征 。

事实像CLIP、DINOv2这样的现代通用表征学习要领 ,正是在大规模数据上自动化地学习了这种“人类对齐”的视觉表达 ,才在多种下游使命中体现出强盛的泛化能力 。

至此 ,团队的研究重心正式从“像素级重修”转向了强调理解力的“通用表征学习” 。

VTP:回归“压缩即智能”实质

基于这一认知转变 ,VTP的设计原则变得异常清晰 。团队体现:

我们应该融合所有已知有用的表征学习要领来构建一个Tokenizer

详细而言 ,VTP这次率先实现了从只练“重修”到“明确、重修、天生”的联合优化 。

一是通过图文比照学习 ,建设高层语义明确 。

在训练时 ,团队会给模子看大宗图像-文本配对数据(如“一只猫在沙发上”与对应图片) ,然后要求图片的特征向量和文字的特征向量尽可能靠近 。

这和之前的CLIP思绪一脉相承 ,但目的更聚焦 。CLIP追求的是广义的图文匹配能力 ,而VTP则要求Tokenizer在压缩图像为紧凑的潜在编码时 ,必需保存与文本对齐的语义结构 。

这意味着 ,天生模子后续吸收到的每一个潜在体现 ,自己就已经是“有语义的”——它不但是一堆像素的压缩 ,而是携带了“猫”、“沙发”等看法及其关系的结构化表达 。和以往相比 ,“语义注入”被提前到了压缩阶段 。

二是通过自监视学习 ,掌握空间结构与视觉知识 。

在VTP框架中 ,自监视学习?橥ü笛诼胪枷窠#∕IM) 和自蒸馏(DINO气概) ,“迫使”模子去明确图片的空间关系和物体结构 。

这个历程会“逼着”Tokenizer往返覆差别问题:

通过自蒸馏回覆:抛开详细的像素细节 ,这张图片最焦点的视觉主题或看法是什么?(全局语义)通过MIM回覆:凭证你看到的“冰山一角” ,你能推断出整个“冰山”的形状和结构吗?(结构推理)二者协同回覆:为了识别图片主题或从局部重修整体 ,哪些视觉线索是决议性、不可缺失的?(聚焦焦点)

这一套流程走下来 ,模子对图像的明确便不再停留在像素层面 ,而是构建起了却构化的视觉认知 。

三是通过重修 ,保存须要的底层视觉细节 。

VTP依然保存了重修目的 ,但它的定位爆发了转变——其作用不再是“越准越好” ,而是确保潜在空间中仍然保有天生所需的纹理、颜色与边沿等细节信息 。

这三重目的并非伶仃举行 ,而是通过一个统一的多使命损失函数举行联合优化:

最终 ,VTP获得的不是一个在某个指标上“特殊优异”的压缩器 ,而是一个自带明确能力、对天生模子很是友好的视觉Tokenizer 。

这里也增补一个细节:为什么他们不像许多事情一样直接使用现有的CLIP或DINOv2作为Tokenizer ,而非要投入重大算力重新预训练一个?

其焦点思索在于两点(团队原话如下):

表征真的很主要 ,我们想要做到很极致 。在我们的视角下表征包括了自监视、比照学习、甚至是重修(这些只是已知较量成熟的要领 ,现实上理想的表征远不止这些) ,市面上没有一个能够很好地融汇这些要领的模子 ,我们需要自己训练一个 ;诒碚鞯腡okenizer计划具备scaling的潜力 ,预训练是最合理的实现方法 。若是直接使用已有模子蒸馏或者迁徙 ,会由于setting过于重大而破损scaling的性子 ,也会受限于已有的模子规格而无法做充分的论证 。

以是 ,选择“重新最先”的VTP ,着实际体现事实怎样呢?

首次展示了Tokenizer的Scaling Law

归纳综合而言 ,团队通过VTP得出了两大概害发明:

明确力是驱动天生的要害因素视觉Tokenizer也具备明确的Scaling Law

先说第一点 。

VTP用实验证实 ,若是只做重修的话 ,投入资源越多天生反而可能越差 。

下图中 ,代表重修能力的rFID从2.0降至0.5 ,重修效果变好;但代表天生能力的gFID从55.04升至58.56 ,天生效果变差 。

而一旦注入“明确力”(即引入CLIP图文比照/SSL自监视使命) ,模子的天生质量(gFID)会随着明确能力(Linear Probe)的提升而同步变好——

二者泛起显着的正相关 ,且这种提升会随着训练盘算量增添一连推进 。相比之下 ,缺少“明确力”的古板AE Only计划 ,其天生质量和明确能力很快陷入障碍 。

更进一步 ,团队在一律算力下比照了差别组合 ,证实“CLIP+SSL+AE”的联合训练方法上限最高 ,天生与明确指标均最优 。

基于此 ,团队训练的VTP在明确、重修、天生方面均交出了不错的答卷——

在ImageNet上的零样天职类准确率抵达78.2% ,凌驾了原版CLIP的75.5% ,已经具备强通用视觉明确能力;在重修能力上凌驾了Stable Diffusion的VAE , rFID低至0.36;在天生能力上凌驾了此前的刷新要领VA-VAE ,gFID低至2.81 。

更要害的是 ,在抵达相同天生质量的条件下 ,VTP的训练收敛速率比LDM快5.7倍、比VA-VAE快4.1倍 ,大幅降低了训练本钱 。

这一系列体现配合印证了团队的判断:Tokenizer的“语义明确力”而非纯粹的像素重修精度 ,才是驱动天生性能与效率提升的焦点动力 。

再说第二点 ,也是更具突破性的一点 。

团队在实验中发明 ,VTP首次展示了Tokenizer的Scaling Law ,即天生性能可以随预训练中投入的盘算量、参数目和数据规模有用增添 。

仅从算力维度比照 ,在不改动下游DiT标准训练设置的条件下 ,纯粹将Tokenizer的预训练盘算量放大 ,VTP就能为最终天生效果带来65.8%的性能提升 ,且提升曲线仍未触顶 。

反观古板自编码器(AE) ,其性能在仅投入约1/10盘算量时便已饱和 ,且继续增添算力不但收益微乎其微 ,甚至可能导致天生质量倒退 。

以上发明批注 ,接下来除了在主模子上投入更多参数/算力/数据之外 ,还可以通过Tokenizer的scaling来提升整个天生系统的性能 。

这个结论 ,乍一看可能会让人有点转不过弯:什么时间 ,Tokenizer也最先谈scaling了?

在大模子语境里 ,“Scaling Law”险些自然只属于主模子——参数更大、数据更多、算力更猛 ,性能就该继续往上走 。至于Tokenizer ,则恒久被视作一个“前置?椤 ,主打一个够用就行 ,做完重修使命就退场 。

但VTP的泛起却改变了这一现实 ,团队体现:

VTP在latents易学性和通用表征学习之间建设起了明确关联 ,从而第一次将Tokenizer作为scaling的主角 ,展现出周全的scaling曲线和扩展偏向

就是说 ,若是Tokenizer只是被用来精准复刻像素 ,那么无论怎么堆算力 ,提升都将很快见顶;而一旦Tokenizer学到的是具备语义结构、对下游更友好的通用表征 ,事情就完全纷歧样了 。

好比对整个行业来说 ,由于VTP在Tokenizer层面就已经统一了语义对齐、结构认知和细节表达 ,因此其产出的视觉表征自然具备多使命协同的潜力 。

这有点像先把天下翻译成了一种统一、结构化的“视觉语言” 。

一旦这套语言确定下来 ,下游无论是明确使命(如分类、检测) ,照旧天生使命(如图像合成、编辑) ,都不再需要各自“重新学怎么形貌这个天下” ,而只是站在统一套底层表达之上 ,做差别的事情 。

从这个角度看 ,VTP自然适适用来构建“明确-天生统一模子” 。正如团队所言:

Tokenizer层面的统一 ,是更实质的统一

也因此 ,此次VTP的开源就不但单只是提供了一个组件那么简朴了 。

其更大的价值或许在于 ,它为整个行业提供了一条新的、且被实验证执行之有用的路径——

在主模子之外 ,Tokenizer同样是一个值得恒久投入、且具备明确scaling回报的焦点环节 。

现在 ,VTP的论文和模子权重已经果真 ,下手能力强的朋侪也可以实验体验下:

换一个视觉Tokenizer ,模子性能就能变得纷歧样的feeling(手动狗头) 。

【传送门】代码:https://github.com/MiniMax-AI/VTP论文:https://arxiv.org/abs/2512.13687v1模子:https://huggingface.co/collections/MiniMaxAI/vtp

??时势1:久久AV网

??12月28日,120秒读懂中国式现代化,

  不知理科的同砚是否还深思在“将马铃薯去皮切块 ,加水煮沸一准时间……”(今年高考理科综合题) ,文科同砚是否还执念于“美国在开国初 ,由于国力弱小 ,加之受华盛顿‘中立政策’的影响……”(今年高考文科综合题);不知是否有人穿梭于文理中 ,想着中美商业争端中的美国农产品 ,似乎是棉花、大豆没有马铃薯呀!但我相信同砚们一定记得“男儿屈穷心不穷 ,枯荣不等嗔天公 。”(今年高评语文试题中李贺的诗) ,一小我私家虽屈抑困厄 ,但志向犹在!这正是一中在培育你们时 ,期望你们拥有的精神品质!

,韩国三级中文字幕久久 。

??12月28日,鼓励优质作者持续产出,抖音上线《精选开放麦》,

  距离村子尚有一里地 ,可是却像隔着一道天堑般 ,凶狈阻挡在前方 ,要全力攻击了 。

,自拍偷拍25页,欧美aaaaa,欧美日韩黄片视频免费收看 。

??时势2:影音先锋色哟哟

??12月28日,湖南东安机械化播种油菜 让农闲田不再闲,

  早上好!三月 ,是春风温暖、万木吐绿的优美月份 ,春天是漂亮的 ,生涯是优美的 ,而生命更是可爱的 。今天是第27个天下中小学清静教育日 ,今年的主题为我清静 ,我康健 ,我快乐 。接上级通知 ,3月31日(明天)18︰00-18:30 ,湖南卫视《新闻大求真》栏目将播出以中小学清静教育为主题的节目 ,请通学生在家与怙恃配合寓目 ,投止生在校统一收看 。

,95av视频,小受被c哭打桩机sm调教GV,免费看毛片网页 。

??12月28日,北京医药健康产业规模达9761亿元 吸引外企在京投资,

  第一 ,深刻熟悉召开第十一次党代会对学校生长的主要意义 ?玫炒崾墙ㄉ韪咚健⑻厣痛笱 ,作育立异人才 ,实现学?缭绞缴さ男枰 。为国家经济建设和社会生长作育及格的建设者和可靠接棒人是高等院校坚持社会主义办学偏向的实质要求 。我校第十次党代会召开以来 ,我们通过召开七次全委会 ,围绕着“作育什么人 ,怎样作育人”和“办什么样的大学 ,怎样办妥大学”等主要问题 ,以学科建设为龙头 ,实验学校人才强校战略 ,推进学科建设 ,增进申请优势学科平台 ,增强师资步队建设 ,推进高等教育质量工程等等 ,为推动学校刷新生长稳固提供了顽强的政治、头脑和组织包管 。目今 ,我国正处在一个由高等教育大国向高等教育强国迈进的新的历史起点 ,学校的生长也进入到了一个要害的生长时期 。国家对高等教育、作育立异人才提出了新的要求 ,建设立异型国家已经成为国家生长的战略焦点 。作育具有立异精神和立异能力的优异拔尖人才 ,提升学校的办学水平和质量已经成为目今我们办学面临的一个主要问题 。最近 ,在施建军校长的提倡下召开的学科建设钻研会、国际化工程启动会和博士生作育事情会等就捉住了我们学校学科建设、人才作育的要害 。通过调研和讨论 ,全校教职员工、全校上下对学校的生长定位、生长战略和生长路径 ,在凝聚共识的基础上 ,进一步细化为实验 。要把这些已经确定的共识、思绪和详细实验步伐酿成现实的效果 ,就需要全校上下、各级党组织和全体的支持、加入、团结全校师生员工来推进学校的生长 。通过准备召开第十一次党代会 ,我们要认真总结已往近五年岁情中的履历和做法 。特殊是党建事情围绕学校生长所做的事情 ,围绕学科建设、师资步队建设、人才作育 ,调动各方面起劲性和创立性 ,全力推进学校事业生长的履向来总结党的事情 ,提高党建事情的水平 。

,欧美日韩三区二区三区二区,主人请好好疼爱里面,国产在线视频日韩你懂的 。

??时势3:国产老妓女

??12月28日,瑞典学者:中国主张为中东和平稳定带来新希望,

  新的学期 ,我们将面临新的机缘和挑战 ,有人曾诠释机缘就是起劲地去寻找成绩的时机 。本学期我们将起劲推行年级组目的治理责任制 ,强治理、重效劳、抓落实 ,高扬立异精神 ,坚持以人为本 ,外塑形象 ,内强素质 ,关注师生的互动生长 ,使每一位同砚都拥有快乐 ,学会创立 ,学会做人;让每一位先生都爱岗敬业、爱校如家、团结协调 。

,大 美女100%露出奶的视频入口,国产拍视频,免费 无码进口动漫无病毒 。

??12月28日,采访归来话感悟——春天的盛会 欣欣向荣的中国,

  三是把好选民挂号关 。针对我镇村民流动性大的现状 ,为确保村民的选举权和被选举权 ,我们要求各村村民选举委员会在充分思量户籍归属、民事能力等情形的条件下 ,认真做好选民的资格审核事情 ,严酷做到不重登、不错登、不漏登 ,并在正式选举日前20天宣布选民名单 。

,图书馆的女友动漫在线观看,欧美熟女黄色录像片,另类精品视频 。

??时势4:娜美隐私秘 黄www网站

??12月28日,韩国国会通过决议要求解除紧急戒严令,  据中国福利会官方微信新闻 ,6月11日下昼 ,全体与会代表在北京宋庆龄故宅举行庄重的敬献花篮仪式 ,李斌向宋庆龄汉白玉雕像敬献花篮 ,向导全场职员肃立并向宋庆龄雕像三鞠躬 。,一区亚洲视频,Chⅰese嫖妓Video老店,欧美综合色区 。

??12月28日,松花江最末端港口:2023年出口大米4.2万吨同比增长11倍,

  农村经济生长形势逼人 ,生长既是时代的主题 ,又是村民对村干部的殷切期盼 ,这就要求村级干部必需把生长作为兴村富民的第一要务 ,提高生长经济的能力和本事 ,夯实为解决村民现实难题和办理种种公益事业的经济基础 。村级干部要增强生长意识 ,提高生长经济的能力 ,首先 ,事情中要对农民有情绪 。手别长、嘴别馋、身别懒 ,事情要有公心 。要有恒久驻足农村的事业心 。农村事情苦累自不必说 ,村干部要做好受苦受累的准备 ,要有恒久扎根农村的妄想 ,只有这样才华包管经济生长的一连性和稳固性 。要实着实在地弯下腰为农民办实事 ,不要只做外貌文章 。其次 ,要有义无反顾、扎实事情的劲头 。面临事情量越来越大 ,要求越来越高的事情使命 ,农村干部必需树立“扎扎实实 ,求真务实 ,真抓实干”的事情作风 。不管看待哪一项事情 ,要一办究竟 ,不可外貌应付 。特殊是向群众允许了的事 ,必需立说立行 ,有诺必践 ,守信于民 。要求一样平常和群众做到的 ,村干部要带动首先做到 。喊破嗓子 ,不如做出样子 ,群众的眼睛是雪亮的 ,你不起树模带举措用 ,群众就会盯着你 ,你就会影响一大片 ,你怎么去做群众事情 。第三 ,村干部要学会新形势下的致富本事 ,真正成为农民的领路人 。凭证“三个代表”主要头脑的要求 ,新时期农村干部的先进性和模范带举措用 ,应该集中体现在致富奔小康上 ,体现在向导群众配合致富上 。让群众发财致富 ,而我们自己家里穷得叮当响 ,我们尚有什么资格 ,还怎么向导群众致富 。我们宽大村干部 ,应该想富、敢富、会富 ,首先要成为外地的致富强人 ,成为工业生长的带动人 ,给群众做出模范 。特殊是村支部书记、村委会主任都要靠自己的忠实劳动和创业 ,成为农村先富起来的模范 。只有这样 ,村党支部、村干部在群众中才华有威信 。不可像已往一样只顾笃志苦干 ,窝在本村图生长 。要增强学习先进的经济知识 ,增强闯市场的本事 ,向导农民生长优质高效农业;要能从本村现实出发 ,选准选好生长经济的路子 ,既能自己带动致富 ,又能向导群众配合致富;要学会施展优势找蹊径 ,因地制宜抓生长 ,宜工则工 ,宜农则农 ,宜商则商 ,一直拓宽农民致富渠道 。特殊是要跳出农业看农业 ,起劲招商引资 ,鼎力大举支持生长民营经济 ,注重学习经济蓬勃地区的先进履历;要争做社会活动家 ,为农村剩余劳动力找到出路 ,成为农民与外界联系的 “桥头堡” ,最终向导农民走上配合富足的蹊径 。

,欧美一级专区免费大片 日韩欧美,亚洲AV无码国产精品,欧美人妻精品一区二区三区 。

【东西问·汉学家丨石静远:AI时代,汉字如何延续古今辉煌?】

【【巴黎奥运会】邹敬园:团体赛后很难受,这是一种“人生体会”】

责编:孔宪斌

审核:科勒

责编:温温

相关推荐 换一换

Copyright (C) 2001-   dzwww.com. All Rights Reserved

新闻信息效劳允许证 - 音像制品出书允许证 - 广播电视节目制作谋划允许证 - 网络视听允许证 - 网络文化谋划允许证

山东省互联网传媒集团主理  联系电话:0531-85193202  违法不良信息举报电话:0531-85196540

鲁ICP备09023866号-1   鲁公网安备 37010202000111号  

Copyright (C) 2001- Dzwww   鲁ICP备09023866号-1

网站地图