首页
作为大模子从业者或研究员的你,是否也曾为一个模子的 “长文本能力” 而兴奋,却在现实应用中发明它并没有想象中那么智能?
你或许率也遇到过以下逆境之一:
虚伪的昌盛: 模子在 “大海捞针” (Needle-in-a-Haystack) 测试中轻松取得高分,营造了一种长文本能力已经解决的 “虚伪昌盛”。但一旦使命从简朴的信息定位,升级为需要串联疏散证据、整合全局信息的多跳推理 (multi-hop reasoning) 时,模子的体现便会急转直下,难以构建起完整的逻辑链条,袒露出其在深度明确上的真实短板。
训练的恶梦: 长文本、多使命的训练数据就像一个因素重大的 “大杂烩”,其多源、多域的特征,让标准的 RL 算法严重 “水土不平”。你全心设计的奖励函数(Reward Function)很可能由于数据漫衍的强烈转变而爆发误差,导致模子性能不升反降。最终,监控图上那强烈震荡的奖励和熵(Entropy)曲线,无情地宣告着训练历程的 “翻车” 与瓦解。
窗口的天花板: 纵然上下文窗口被扩展到 256K,1M 甚至更长,它也终究是一个有限的 “物理内存”。然而,现实天下的知识流 —— 剖析整个代码客栈、研读一份完整的年度财报、或是精读一部专业巨著 —— 其信息量容易就能突破这个上限。这使得模子在处置惩罚这些 “超框”(Out-of-Window)使命时,不得不依赖分块处置惩罚等妥协计划,最终导致要害全局信息的丧失和端到端推理能力的降级。
若是这些场景让你倍感熟悉,那么问题很可能不在于你不敷起劲,而在于业界缺少一套完整、端到端的长文本推理后训练 “配方”(Post-training Recipe)。
针对这一系列挑战,通义文档智能团队正式推出QwenLong-L1.5—— 一个基于 Qwen3-30B-A3B 打造的长文本推理专家。我们的焦点孝顺,正是提供了这套缺失的 “配方”,它系统性地统一了:
可扩展的高质量数据合成管线为长文本定制的强化学习要领突破物理窗口的智能体架构
这套组合拳,旨在一次性解决从 “学欠好” 到 “用不了” 的全链路难题。
手艺报告: https://huggingface.co/papers/2512.12967GitHub 客栈: https://github.com/Tongyi-Zhiwen/Qwen-Doc
深入拆解:我们的三大「法宝」
要让模子真正掌握长文本推理,零敲碎打的优化是远远不敷的。我们提出了一套系统性的 “组合拳”,包括三大焦点法宝,从基础上重塑模子的学习与思索方法。
法宝一:高质量 “精神食粮” —— 多跳推理数据合成流水线
模子的 “食粮” 决议了它的 “智商”。若是只给模子投喂简朴的 “大海捞针” 式使命,就犹如只让学生做单选题,却期望他能写出长篇叙述文。
为了教会模子真正的 “思索”,我们打造了一条新颖的数据合成流水线。其焦点头脑是 “先拆解,后组合”,专造需要 “多跳溯源 (multi-hop grounding) 和全局推理” 的难题。这就像用乐高积木拼城堡:我们先把一本巨著拆解成一个个知识 “积木”(原子事实),再凭证重大的 “图纸”(如知识图谱、多文档表格),把这些漫衍在差别章节的积木拼成一个雄伟的 “城堡”(重大问题)。
这条流水线由三大 “出题引擎” 驱动,能程序化地天生无限无尽的高质量挑战:
知识图谱指导 (KG-Guided): 自动挖掘文档间的深层逻辑链,天生环环相扣的多跳推理题,强制模子举行跨段落、跨文档的关联思索?缥牡当砀褚 (Cross-document Table Engine): 从多个非结构化文档中自动抽取出数据,整合成统一的结构化表格,据今天生需要聚合、统计与重大盘算的数值推理题。多智能体自我进化 (MASE): 设计一个由 “出题者”、“解题者”、“磨练者” 组成的多智能体框架,基于无标签文档自动合成通用长文本使命,通过 “出题 - 解题 - 磨练” 的循环,连系历史合成使命提升使命难度和广度。
法宝二:稳固高效的 RL 优化战略
强化学习(RL)是提升模子推理能力的要害,但在长文本、多使命场景下,标准的 RL 要领碰面临两大严肃挑战,极易导致训练瓦解。
第一个挑战源于数据漫衍的异构性。我们的长文本训练数据来自代码、学术文献、财报等多个领域,使命类型也涵盖了问答、盘算、剖析等。这种重大性导致在训练的每个批次(mini-batch)内,数据漫衍都会爆发强烈偏移(distributional drift)。
这种偏移会严重滋扰奖励信号(reward)的稳固性,并对优势函数(advantage function)的预计引入重大噪声,使得梯度更新偏向变得极不可靠。为解决此问题,我们接纳了双重战略:
使命平衡采样(Task-balanced Sampling): 在构建每个训练批次时,强制从差别的使命类型(如多跳推理、数值盘算、对话影象等)中匀称抽取样本,从源头上包管了批次内数据漫衍的相对平衡。
使命专属优势预计(Task-specific Advantage Estimation): 在盘算优势函数时,我们不再对整个批次的奖励举行标准化,而是在每个使命类型内部自力举行。这能有用隔离差别使命间迥异的奖励漫衍(如 0/1 的希罕奖励与 0-1 的麋集奖励),从而为每个使命提供更准确、更稳固的优势信号。
第二个挑战是长文本推理中的信用分派难题(Credit Assignment Problem)。在天生式使命中,一个最终过失的谜底(negative response)往往包括了大宗完全准确的中心推理办法。古板的 RL 算法通过一个简单的负向奖励来处分整个序列,这种 “一刀切” 的做法会过失地处分那些准确的、具有探索价值的办法,不但压制了模子的探索能力,甚至可能导致 “熵坍塌”(entropy collapse)和训练早停。
为此,我们提出了自顺应熵控制战略优化(Adaptive Entropy-Controlled Policy Optimization, AEPO)算法。AEPO 的焦点是一种基于模子自身不确定性(以战略熵权衡)的动态梯度屏障机制:
当模子在高不确定性(高熵)状态下天生了过失谜底时,AEPO 会自动屏障(mask)其负向梯度。这;ち四W拥奶剿餍孕形,阻止因处分不可熟的实验而损失学习潜力。
反之,当模子在高置信度(低熵)状态下依然出错时,负向梯度会被正常施加,以坚决纠正这些高置信度的过失。
通过这种动态的、智能的梯度控制,AEPO 将模子战略的熵稳固在一个康健的区间,完善平衡了探索与使用,从基础上解决了长文本 RL 中的不稳固性问题。
法宝三:突破极限的 “外置大脑”—— 影象治理框架
256K 的上下文窗口,实质上是一种有限的 “短期影象”。扑面临浩如烟海的真实天下知识流时,我们需要的不是一个更大的窗口,而是一个全新的事情模式。
为此,我们为模子设计了一套影象治理框架 (Memory Management Framework),这相当于给了它一个可无限扩展的 “智能条记本”。在阅读超长文档时,模子不再试图将所有内容硬塞进 “短期影象”,而是学会了边读边记要点(迭代式影象更新),形成结构化的影象,并在需要时高效检索和使用这些 “条记”。
但这并非一个伶仃的工具。通过巧妙的多阶段融合 RL 训练 (multi-stage fusion RL training),我们将这种 “条记能力” 与模子与生俱来的 “过目成诵”(窗口内推理)能力无缝地融合在了一起。最终获得的,是一个统一的模子 —— 一个既能 “深思” 又能 “博览” 的万能选手,真正突破了物理窗口的约束。
效果展示
性能周全奔腾,30B moe 模子实现媲美顶级旗舰的效果!
QwenLong-L1.5 在多个权威长文本推理基准上取得了令人瞩目的效果,其体现可以总结为:
整体性能奔腾: 相比基线模子 Qwen3-30B-A3B-Thinking,QwenLong-L1.5 的平均分暴涨 9.9 分!这证实晰我们全套后训练 “配方” 的重大乐成。比肩顶级旗舰: 在多个权威长文本榜单上,我们的 30B-A3B 模子取得了与 GPT-5、Gemini-2.5-Pro 等业界顶级闭源模子相媲美的性能,展现了极强的竞争力。精准的能力跃升: 更值得注重的是,我们的性能提升精准地体现在了最能磨练深度推理能力的重大使命上。在需要多跳推理和全局信息整合的 MRCR、CorpusQA 和 LongBench-V2 等基准上,我们划分取得了+31.72、+9.69 和 +6.16 的性能增添!
这并非巧合,而是精准地验证了我们 “高质量精神食粮”(可编程数据合成)的有用性 —— 我们专门为模子打造了什么样的难题,它就在解决这些难题上获得了最强的能力!
意外之喜:通用能力不降反升!
训练 “专才” 是否会牺牲 “通才” 能力?这是大模子微调中常见的 “跷跷板” 难题。
我们的谜底是:不但不会,反而会相互增进!
实验效果显示,经由长文本强化训练后,QwenLong-L1.5 不但没有泛起 “偏科” 或 “遗忘”,反而在一系列通用能力上也获得了显著提升:
在数学推理 (AIME25) 使命上体现更优;在智能体影象 (BFCL) 使命中展现出更强的状态追踪能力;在长对话 (LongMemEval) 场景下,影象和明确能力大幅增强。
这有力地证实晰,提升长程信息整合能力,是一种基础性的 “认知升级”,其收益会辐射到模子的各项焦点能力之中。
挑战极限:征服 1M~4M Token 超长文本!
当使命长度远超物理上下文窗口时,模子真正的扩展能力才得以体现。
借助我们的 “外置大脑”(影象治理框架),QwenLong-L1.5 在处置惩罚百万、甚至四百万级别的超长使命时,展现出了卓越的性能。
效果显示,QwenLong-L1.5 在这些极限挑战中,性能远超同类智能体要领,充分验证了我们框架强盛的可扩展性。这批注,我们不但提升了模子在窗口内的能力,更付与了它突破物理窗口限制、处置惩罚无限信息流的重大潜力。
总结
总结:我们提出的 QwenLong-L1.5 及其背后的 “数据合成 + RL 优化 + 影象治理” 三位一体的后训练框架,为解决大模子长文本推理难题提供了一条经由验证的、可复现的路径。
开源呼吁:我们相信开放与共享的实力。相关手艺细节已在论文中宣布,代码也在 https://github.com/Tongyi-Zhiwen/Qwen-Doc 开源=哟魅讼略厥褂谩⒔涣魈教,配合推动长文本手艺的生长!
《粗黑插欧美日韩》,《Q8X2R7L1T4J5M9B6W3》无码AAA片毛片观看
“欧美综合婷婷”
欧美黄页在线观看
……
01月01日
“永久在线精品免费”不良执念清除师
↓↓↓
01月01日,广州花市增城打头炮,一级无码免费高清视频,一级一区,大雷被咬得哭着求饶,调教,捆绑,吊虐,妓女
01月01日,盖“被子”帮冰块度夏 从哈尔滨存冰有道看科技保温妙招,久久人人超国产三级,瑟涩在线视频,免费啪视频在线观看免费的,欧美一级强奸片
01月01日,海外华裔青少年寻根山西:观古建、品陈醋、学非遗,男人天堂最新在线,男性自慰Gαy furry,超碰在线免费亚洲精品,欧美男女一级性生活视频
01月01日|探访金庸祖籍地:婺源浙源乡的千年古村慢时光|久久久久久国产一级大真人毛片|高清无码专区色综合|国产av天堂久久久久|日韩国产爽爽视频
01月01日|读懂数智时代教育的变局与初心 专家论道:面对未来培养什么人、怎样培养人|影音资源站|呦交Vdeos乱叫女娇小|A片不卡免费网站在在线观看|亚洲色污污网站在线
01月01日|《毛泽东在闽西》研讨会在京举行|91精品午夜福利在线看桃花岛|天美视传媒免费版|2020欧美性爱视频|jiuse006……
01月01日,2023年江西省GDP达32200.1亿元 同比增长4.1%,蠢沫沫全册,国产精品久久久久精品小草下载,欧美乱能,无码天天av
01月01日,海上名家泼墨送福 五湖四海共迎新春,在线免费黄片一区,www.色色网站,国产精品区一区第一页,欧美A片视频精品
01月01日|浙江杭州:托起残疾人的“共富梦”|3D动漫爆操插|学生XXXX91|毛片A片7777777777朋友妻可以奇|用力快一点就快高潮了
01月01日,《咏春》出海:越是民族的,越是世界的,黄片免费99,黄色毛片一级,日韩 欧美 一区,黑人特级黄色网站
01月01日,上海邮轮口岸国际邮轮现四船同靠,不知火舞里番库,欧美最黄片αⅴ视频,99精品国产闺蜜国产在线,我要收看中国少妇黄包片视频
01月01日,冷链储运“热”了!“班列+冷链”新业态拓展新市场,亚洲精品16,日韩 欧美 本地,全部一级A片黄大片,人人爱人人艹
01月01日|39家企业在北京亦庄结成商业航天联盟|欧美日aaaa一级片|99tv快乐视频|征服麻麻的婬肉泬小说|男女爱爱动态图
01月01日|广东省卫生健康委原副主任徐庆锋被“双开”|白丝老师让我 了一夜动漫英文|99re这里只有免费|91亚州精品图片|免费视频A片在线
01月01日|南京民众踏青赏景沐浴三月春光|欧美一区二区三欧A片直播|国产免费A V吧在线观看不卡|黑鬼猛草范冰冰|中文字幕毛片一区二区
MSI八强淘汰赛抽签对阵,明日方舟 引星棘刺|以人类前途为怀 以人民福祉为念——2024年春季中国元首外交纪事|99ria|欧美一级人5言视频|王语纯最新版本|欧美性在线看
监制:邓金木
策划:赖晗
主创:唐征宇 林箴贺 陈佛烘 颜亦阳 陈林韵
编辑:王家菁、段圣祺
因持续暴雨 玻利维亚首都拉巴斯进入紧急状态!
四川康定山洪泥石流灾害已致12人遇难、15人失联
酷暑天气致韩国14人身亡
秘鲁,是个怎样的国家?
文化氤氲正当时
广东启动防冻Ⅳ级应急响应
学习进行时丨领悟习近平文化思想系列之四:着力提升新闻舆论传播力引导力影响力公信力
23人被问责 山西公布增子坊煤矿一般机电事故调查报告
和评理丨巩固中法友谊 造福两国和世界
中国人寿安徽金融中心:打造绿色低碳楼宇,成就合肥区域标杆
怎么看黄片免费360
2019中文字幕黄色视频
18岁以下禁看的黄
快C我啊 用力 嗯 轻一点原神
九九久久久网站视频
久久天然无码
国产精品一区免费
特级一级黄片
免费黄色址
精品国产玩哟在线观看

闽公网安备 35010302000113号