首页
作为大模子从业者或研究员的你,是否也曾为一个模子的 “长文本能力” 而兴奋,却在现实应用中发明它并没有想象中那么智能?
你或许率也遇到过以下逆境之一:
虚伪的昌盛: 模子在 “大海捞针” (Needle-in-a-Haystack) 测试中轻松取得高分,营造了一种长文本能力已经解决的 “虚伪昌盛”。但一旦使命从简朴的信息定位,升级为需要串联疏散证据、整合全局信息的多跳推理 (multi-hop reasoning) 时,模子的体现便会急转直下,难以构建起完整的逻辑链条,袒露出其在深度明确上的真实短板。
训练的恶梦: 长文本、多使命的训练数据就像一个因素重大的 “大杂烩”,其多源、多域的特征,让标准的 RL 算法严重 “水土不平”。你全心设计的奖励函数(Reward Function)很可能由于数据漫衍的强烈转变而爆发误差,导致模子性能不升反降。最终,监控图上那强烈震荡的奖励和熵(Entropy)曲线,无情地宣告着训练历程的 “翻车” 与瓦解。
窗口的天花板: 纵然上下文窗口被扩展到 256K,1M 甚至更长,它也终究是一个有限的 “物理内存”。然而,现实天下的知识流 —— 剖析整个代码客栈、研读一份完整的年度财报、或是精读一部专业巨著 —— 其信息量容易就能突破这个上限。这使得模子在处置惩罚这些 “超框”(Out-of-Window)使命时,不得不依赖分块处置惩罚等妥协计划,最终导致要害全局信息的丧失和端到端推理能力的降级。
若是这些场景让你倍感熟悉,那么问题很可能不在于你不敷起劲,而在于业界缺少一套完整、端到端的长文本推理后训练 “配方”(Post-training Recipe)。
针对这一系列挑战,通义文档智能团队正式推出QwenLong-L1.5—— 一个基于 Qwen3-30B-A3B 打造的长文本推理专家。我们的焦点孝顺,正是提供了这套缺失的 “配方”,它系统性地统一了:
可扩展的高质量数据合成管线为长文本定制的强化学习要领突破物理窗口的智能体架构
这套组合拳,旨在一次性解决从 “学欠好” 到 “用不了” 的全链路难题。
手艺报告: https://huggingface.co/papers/2512.12967GitHub 客栈: https://github.com/Tongyi-Zhiwen/Qwen-Doc
深入拆解:我们的三大「法宝」
要让模子真正掌握长文本推理,零敲碎打的优化是远远不敷的。我们提出了一套系统性的 “组合拳”,包括三大焦点法宝,从基础上重塑模子的学习与思索方法。
法宝一:高质量 “精神食粮” —— 多跳推理数据合成流水线
模子的 “食粮” 决议了它的 “智商”。若是只给模子投喂简朴的 “大海捞针” 式使命,就犹如只让学生做单选题,却期望他能写出长篇叙述文。
为了教会模子真正的 “思索”,我们打造了一条新颖的数据合成流水线。其焦点头脑是 “先拆解,后组合”,专造需要 “多跳溯源 (multi-hop grounding) 和全局推理” 的难题。这就像用乐高积木拼城堡:我们先把一本巨著拆解成一个个知识 “积木”(原子事实),再凭证重大的 “图纸”(如知识图谱、多文档表格),把这些漫衍在差别章节的积木拼成一个雄伟的 “城堡”(重大问题)。
这条流水线由三大 “出题引擎” 驱动,能程序化地天生无限无尽的高质量挑战:
知识图谱指导 (KG-Guided): 自动挖掘文档间的深层逻辑链,天生环环相扣的多跳推理题,强制模子举行跨段落、跨文档的关联思索?缥牡当砀褚 (Cross-document Table Engine): 从多个非结构化文档中自动抽取出数据,整合成统一的结构化表格,据今天生需要聚合、统计与重大盘算的数值推理题。多智能体自我进化 (MASE): 设计一个由 “出题者”、“解题者”、“磨练者” 组成的多智能体框架,基于无标签文档自动合成通用长文本使命,通过 “出题 - 解题 - 磨练” 的循环,连系历史合成使命提升使命难度和广度。
法宝二:稳固高效的 RL 优化战略
强化学习(RL)是提升模子推理能力的要害,但在长文本、多使命场景下,标准的 RL 要领碰面临两大严肃挑战,极易导致训练瓦解。
第一个挑战源于数据漫衍的异构性。我们的长文本训练数据来自代码、学术文献、财报等多个领域,使命类型也涵盖了问答、盘算、剖析等。这种重大性导致在训练的每个批次(mini-batch)内,数据漫衍都会爆发强烈偏移(distributional drift)。
这种偏移会严重滋扰奖励信号(reward)的稳固性,并对优势函数(advantage function)的预计引入重大噪声,使得梯度更新偏向变得极不可靠。为解决此问题,我们接纳了双重战略:
使命平衡采样(Task-balanced Sampling): 在构建每个训练批次时,强制从差别的使命类型(如多跳推理、数值盘算、对话影象等)中匀称抽取样本,从源头上包管了批次内数据漫衍的相对平衡。
使命专属优势预计(Task-specific Advantage Estimation): 在盘算优势函数时,我们不再对整个批次的奖励举行标准化,而是在每个使命类型内部自力举行。这能有用隔离差别使命间迥异的奖励漫衍(如 0/1 的希罕奖励与 0-1 的麋集奖励),从而为每个使命提供更准确、更稳固的优势信号。
第二个挑战是长文本推理中的信用分派难题(Credit Assignment Problem)。在天生式使命中,一个最终过失的谜底(negative response)往往包括了大宗完全准确的中心推理办法。古板的 RL 算法通过一个简单的负向奖励来处分整个序列,这种 “一刀切” 的做法会过失地处分那些准确的、具有探索价值的办法,不但压制了模子的探索能力,甚至可能导致 “熵坍塌”(entropy collapse)和训练早停。
为此,我们提出了自顺应熵控制战略优化(Adaptive Entropy-Controlled Policy Optimization, AEPO)算法。AEPO 的焦点是一种基于模子自身不确定性(以战略熵权衡)的动态梯度屏障机制:
当模子在高不确定性(高熵)状态下天生了过失谜底时,AEPO 会自动屏障(mask)其负向梯度。这;ち四W拥奶剿餍孕形,阻止因处分不可熟的实验而损失学习潜力。
反之,当模子在高置信度(低熵)状态下依然出错时,负向梯度会被正常施加,以坚决纠正这些高置信度的过失。
通过这种动态的、智能的梯度控制,AEPO 将模子战略的熵稳固在一个康健的区间,完善平衡了探索与使用,从基础上解决了长文本 RL 中的不稳固性问题。
法宝三:突破极限的 “外置大脑”—— 影象治理框架
256K 的上下文窗口,实质上是一种有限的 “短期影象”。扑面临浩如烟海的真实天下知识流时,我们需要的不是一个更大的窗口,而是一个全新的事情模式。
为此,我们为模子设计了一套影象治理框架 (Memory Management Framework),这相当于给了它一个可无限扩展的 “智能条记本”。在阅读超长文档时,模子不再试图将所有内容硬塞进 “短期影象”,而是学会了边读边记要点(迭代式影象更新),形成结构化的影象,并在需要时高效检索和使用这些 “条记”。
但这并非一个伶仃的工具。通过巧妙的多阶段融合 RL 训练 (multi-stage fusion RL training),我们将这种 “条记能力” 与模子与生俱来的 “过目成诵”(窗口内推理)能力无缝地融合在了一起。最终获得的,是一个统一的模子 —— 一个既能 “深思” 又能 “博览” 的万能选手,真正突破了物理窗口的约束。
效果展示
性能周全奔腾,30B moe 模子实现媲美顶级旗舰的效果!
QwenLong-L1.5 在多个权威长文本推理基准上取得了令人瞩目的效果,其体现可以总结为:
整体性能奔腾: 相比基线模子 Qwen3-30B-A3B-Thinking,QwenLong-L1.5 的平均分暴涨 9.9 分!这证实晰我们全套后训练 “配方” 的重大乐成。比肩顶级旗舰: 在多个权威长文本榜单上,我们的 30B-A3B 模子取得了与 GPT-5、Gemini-2.5-Pro 等业界顶级闭源模子相媲美的性能,展现了极强的竞争力。精准的能力跃升: 更值得注重的是,我们的性能提升精准地体现在了最能磨练深度推理能力的重大使命上。在需要多跳推理和全局信息整合的 MRCR、CorpusQA 和 LongBench-V2 等基准上,我们划分取得了+31.72、+9.69 和 +6.16 的性能增添!
这并非巧合,而是精准地验证了我们 “高质量精神食粮”(可编程数据合成)的有用性 —— 我们专门为模子打造了什么样的难题,它就在解决这些难题上获得了最强的能力!
意外之喜:通用能力不降反升!
训练 “专才” 是否会牺牲 “通才” 能力?这是大模子微调中常见的 “跷跷板” 难题。
我们的谜底是:不但不会,反而会相互增进!
实验效果显示,经由长文本强化训练后,QwenLong-L1.5 不但没有泛起 “偏科” 或 “遗忘”,反而在一系列通用能力上也获得了显著提升:
在数学推理 (AIME25) 使命上体现更优;在智能体影象 (BFCL) 使命中展现出更强的状态追踪能力;在长对话 (LongMemEval) 场景下,影象和明确能力大幅增强。
这有力地证实晰,提升长程信息整合能力,是一种基础性的 “认知升级”,其收益会辐射到模子的各项焦点能力之中。
挑战极限:征服 1M~4M Token 超长文本!
当使命长度远超物理上下文窗口时,模子真正的扩展能力才得以体现。
借助我们的 “外置大脑”(影象治理框架),QwenLong-L1.5 在处置惩罚百万、甚至四百万级别的超长使命时,展现出了卓越的性能。
效果显示,QwenLong-L1.5 在这些极限挑战中,性能远超同类智能体要领,充分验证了我们框架强盛的可扩展性。这批注,我们不但提升了模子在窗口内的能力,更付与了它突破物理窗口限制、处置惩罚无限信息流的重大潜力。
总结
总结:我们提出的 QwenLong-L1.5 及其背后的 “数据合成 + RL 优化 + 影象治理” 三位一体的后训练框架,为解决大模子长文本推理难题提供了一条经由验证的、可复现的路径。
开源呼吁:我们相信开放与共享的实力。相关手艺细节已在论文中宣布,代码也在 https://github.com/Tongyi-Zhiwen/Qwen-Doc 开源=哟魅讼略厥褂谩⒔涣魈教,配合推动长文本手艺的生长!
《无码AAA片毛片观看》,《Q8X2R7L1T4J5M9B6W3》免费黄一区拒绝收费
“人人干人人摸人人草久婷”
91在线国产视频观看
……
01月01日
“直接可以看的黄片”全红婵又双叒叕拿捏
↓↓↓
01月01日,3D打印药膜能“剿灭”癌细胞,谁有黄色网站视频,另类专区在线亚洲视频|变态另类~第1页|欧美另类图片区视频一区|亚洲 图片另类,国产AV色爽看到爽,又爽又黄又无遮挡网站动态图
01月01日,上海市两会观察:如何为上海增添一缕“书香”?,91最新亚洲精品中文字幕,免费永久看黄网址直接看,akt.vicineko.cim星穹铁道,jmcomica.vip
01月01日,“五一”假期前3天广东重点景区接待游客791.9万人次,蘑菇视频免费版无限解锁版的特点,我脱了内裤坐在男朋友的身上视频,99热这里只有精品国产免费观看,欧美先锋
01月01日|郑钦文首进澳网女单八强|女女女女|龙卷被 黄漫扒衣|黃色视频在线免费看|中国 色情老太HD80
01月01日|西藏林芝:中国西藏第五届跨喜马拉雅国际公路自行车极限赛开赛|欧美一区二区午夜免费性爱视频|国产人体av|男同片|真人性恔20分钟
01月01日|中亚国家“Z世代”探秘敦煌 愿做文化往来使者|美女国产黄色|午夜理论AAA级在线播放|欧美肥老熟妇XXXXX脚|黄片一区二区免费看……
01月01日,海南探索耕地“电子身份证(二维码)”机制,黄a视频亚洲,黄色视频在线观看18,日本在线视频www色影响短视频,国产日本精品
01月01日,海南自贸港已推出146项制度集成创新案例,在线永久免费无码不卡视频地址,英国黄色片,大 美100%露出奶,女人裸体性爱全过程
01月01日|南非开普敦海域遭遇赤潮 海水呈铁锈红色|午夜性开放午夜性爽爽视频|青草青免费视频永久观看|免费三级黄片视频一区二区|甘雨裸体 开腿涩涩的小说
01月01日,港深创科园迈新里程碑 专家建议乘势而上加快建设,欧美激情视频在线观看免费播放,免费一级无码婬视频,欧美黄片久久,人人人人草Av
01月01日,湖北钟祥:激活“民俗民艺”打造乡村振兴“新引擎”,人人槽操人人,特黄AAAAA片免费观看,带上羊眼圈日逼视频,A级毛片黄片
01月01日,写下“第二十条”的许静苏州谈书法如何破壁,逹葢薾的旗帜2025地址,www.黄色网站免费观看,曰批免费视频播放在线看片,18+成人网站
01月01日|多国驻华使节走进中国商飞|白鹿被操小说|超碰人人插|八卦海ABW-251破解最新版本更新内容分|18禁黄色免费网站
01月01日|众行致远|如何“读懂中国”?习近平主席这样阐释|wwwxxx18禁动漫软件|小黄片大全|美欧激情久久五月|更多亚洲黄色视频
01月01日|聚焦服务精准化 陕西多部门联动为民营企业“聚才引智”|国产一级牲交高潮片免费|欧美整片欧洲熟妇色自慰|擼擼社免费看黄|黄色视频在线播放视频大全网站大全网站大全网站大全网站
吧友神计算胡歌身高,EDG胜决对阵LEV|新疆阿克苏地区乌什县发生7.1级地震 27趟列车运行受影响|男女免视频|亚洲视频在线观看免费视频|99ria|亚洲无码性爱小视频
监制:邓金木
策划:赖晗
主创:唐征宇 林箴贺 陈佛烘 颜亦阳 陈林韵
编辑:王家菁、段圣祺
香港警方展开反毒品行动拘99人 年龄最小者仅12岁
浙江:平均年龄18岁的“小委员”走进杭州市两会
日本女川核电站一设备意外启动 电力公司称无辐射影响
中国人民银行行长潘功胜出席第49届国际货币与金融委员会会议
2024央视龙年春晚第一次大联排 辛芷蕾、苏有朋、汪苏泷、岳云鹏等人现身
Sora神话:迄今最具破坏性的网络威胁?
第37届中国电影金鸡奖提名公布
(文化中国行)“她力量”绽放文物普查
财政部:一季度全国一般公共预算收入60877亿元
外交部:BBC妄言新疆番茄采收存在“强迫劳动” 是典型的双标
抖音李雅新最惊艳的三个作品
.免费 成人 美女在线观看
91巨乳泳池
无码在线视频免费看
黄色性爱高潮网站在线免费观看视频
范冰冰做爱视频
18 小泬喷白浆啪啪国外
在线黄片观看视频
国产破外女一级视频免费
日韩区一

闽公网安备 35010302000113号